Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

The unexpected behavior of pulsing stars could help us measure the universe

New research offers the most precise measurements yet of pulsating Cepheid stars, which may hold clues about the immense size and scale of our universe.

Rotation Curves of Galaxies Stay Flat Indefinitely

In his classic book On the Structure of Scientific Revolutions, the philosopher Thomas Kuhn posited that, for a new scientific framework to take root, there has to be evidence that doesn’t sit well within the existing framework. For over a century now, Einstein’s theory of relativity and gravity has been the existing framework. However, cracks are starting to show, and a new paper from researchers at Case Western Reserve University added another one recently when they failed to find decreasing rotational energy in galaxies even millions of light years away from the galaxy’s center.

Galaxies are known to rotate – even our solar system travels in a circle around the center of the Milky Way galaxy at around 200 km per second, though we can’t perceive any motion on human time scales. According to Newtonian dynamics, this rotational speed should slow down the farther away a star is from the center of a galaxy. However, observations didn’t support this, showing that the speed kept up no matter how far away the star is.

That led scientists to create another force impacting the speed of rotation of the farthest-out stars. Today, we commonly call it dark matter. However, scientists have also spent decades trying to puzzle out what exactly dark matter is made of and have yet to come up with a coherent theory.

Anton dives into a weird quirk of galaxy rotation.
Credit – Anton Petrov YouTube Channel

But in some cases, even the existence of dark matter as we know it doesn’t match the observational data. Dr. Tobias Mistele, a post-doc at Case, found that the rotational speed of galaxies doesn’t drop off, no matter how far out they are and no matter how long they’ve been doing so. This data flies in the face of a traditional understanding of dark matter, where its gravitational influence is felt by a “halo” surrounding the dark matter itself. Even these dark matter halos have an effective area. Dr. Mistele and his co-authors found evidence of maintained rotational speed that should be well outside the sphere of influence of any dark matter halo existing in these galaxies.

To collect this data, the authors used a favorite tool of cosmologists – gravitational lensing. They collected data on galaxies that were far away and had their light amplified by a galaxy cluster or similarly massive object that was nearer. When collecting the data, Dr. Mistele analyzed the speed of rotation of the stars in a galaxy and plotted it against the distance of those stars from the galaxy’s center. This is known as a “Tully-Fisher” relation in cosmology.

Continue reading

Almost a Third of Early Galaxies Were Already Spirals

In the years before the JWST’s launch, astronomers’ efforts to understand the early Universe were stymied by a stubborn obstacle: the light from the early Universe was red-shifted to an extreme degree. The JWST was built with extreme redshifts in mind, and one of its goals was to study Galaxy Assembly.

Once the JWST activated its segmented, beryllium eye, the Universe’s most ancient, red-shifted light became visible.

The light emitted by the first galaxies is not only faint but has been stretched by billions of years of cosmic expansion. The galaxies that emitted that light are called high-redshift galaxies, where redshift is indicated by the letter z. Since its shifted into the red, only infrared telescopes can see it. Telescopes like the Hubble and the Spitzer can see some redshifted light. But the JWST has far more power than its predecessors, allowing it to effectively see further back in time.

“Using advanced instruments such as JWST allows us to study more distant galaxies with greater detail than ever before.”

Yicheng Guo, Department of Physics and Astronomy, University of Missouri

Observations have shown that galaxies grow large through mergers and collisions and that up to 60% of all galaxies are spirals. But how did the process play out? When did the first spirals emerge? An answer to that question trickles down and affects other outstanding questions about galaxies.

This figure from the research shows some of the galaxies in the sample. Redshift increases from left to right, and the rows from top to bottom show the range of galaxies classified as spiral to nonspiral. "Spiral structure is easier to see at the lower redshift ranges and becomes less pronounced at higher redshifts." the authors write. The top three rows show galaxies identified as spirals with strong confidence, the middle three rows show galaxies identified as spirals with less confidence, and the bottom row shows non-spirals. Image Credit: Kuhn et al. 2024
Continue reading

Join the FAA's virtual public meeting about SpaceX's Starship this evening

The FAA is holding a virtual public meeting this evening (June 17) about the potential environmental impact of SpaceX's Starship operations in Florida, and you can participate.

Shine on, Starliner! Aurora glows green as astronauts test spacecraft ahead of return to Earth June 22 (image, video)

Boeing Starliner has seen its one-week test mission in space double to about two weeks. That allowed time for an incredible aurora show during thruster testing on June 15.

Which Stars are Lethal to their Planets?

Many years ago, there was a viral YouTube video called “History of the entire world, i guess,” which has been an endless source of internet memes since its release. One of the most prominent is also scientifically accurate—when describing why animals couldn’t start living on land, the video’s creator, Bill Wurtz, intones, “The Sun is a deadly laser.” 

Early in planetary development, the X-ray and ultraviolet radiation level of a planet’s host stars could sterilize the entire planet’s surface, even if it is in the so-called “habitable zone.” To narrow down the search for potentially habitable planets, the team at the Chandra X-ray Observatory and XMM-Newton telescopes took a look at stars that had planets in their habitable zone and analyzed them for whether the star’s radiation itself might preclude life as we know it from developing there.

Over ten observational days on Chandra and 26 on XMM-Newton, scientists observed 57 stars close enough to Earth to have their exoplanets explored by the next generation of exoplanet-hunting telescopes, such as the Habitable Worlds Observatory. While not all of them had known exoplanets, at least some did. 

YouTube Video detailing the research.
Credit – Chandra X-ray Observatory YouTube Channel

However, those exoplanets were typically much larger than Earth, even if they were in the habitable zone. It is much easier to detect giant planets orbiting close to their stars using modern date exoplanet detection techniques like transiting and astrometry. A press release from Chandra notes how many more rocky exoplanets the size of Earth are likely hiding around these stars, but our limited detection methods are not yet capable of finding them.

That isn’t to say we can’t learn much about their host stars, though, and that is where the data from the paper presented to the 244 meeting of the American Astronomical Society in Madison, Wisconsin, comes in. Watching the X-ray emissions of these local stars allowed the team to narrow down what stars to look at for potentially habitable exoplanets, thereby allowing the future powerful planet hunters to focus their observational time on candidates that are more likely to produce results.

Continue reading

NASA moon orbiter spots Chinese lander on lunar far side (photo)

NASA's Lunar Reconnaissance Orbiter has taken its first look at China's Chang'e 6 spacecraft on the moon's far side.

The universe’s biggest explosions made some of the elements we are composed of. But there’s another mystery source out there

In order to explain the presence of these heavier elements today, it’s necessary to find phenomena that can produce them. One type of event that fits the bill is a gamma-ray burst (GRB) – the most powerful class of explosion in the universe.

NASA’s asteroid sample mission gave scientists around the world the rare opportunity to study an artificial meteor

Meteoroids are difficult objects for aerospace and geophysics researchers like us to study, because we can’t usually predict when and where they will hit the atmosphere. But on very rare occasions, we can study artificial objects that enter the atmosphere much like a meteoroid would.

This long-studied star is actually a stellar duo: 'We were absolutely stunned'

A young star that astronomers have studied for decades has been found to be part of a duo, encircled by a disk of material within which planets may have just begun coalescing.

Something 'kicked' this hypervelocity star racing through the Milky Way at 1.3 million miles per hour (video)

A low-mass star races through the Milky Way at over a million miles per hour, a journey that began with either the supernova explosion of a vampire star or an encounter with black holes.

Spirals Galaxies May Be a Dime a Dozen in the Early Universe

A new study with data from the James Webb Space Telescope found that galaxies may have started forming spirals far earlier than astronomers previously thought.

The post Spirals Galaxies May Be a Dime a Dozen in the Early Universe appeared first on Sky & Telescope.

ESA Impact 2024 – June Council Edition

ESA Impact 2024 – June Council Edition

ESA Impact Council Edition: Spotlight on recent milestones

Preparing ESA's Arctic Weather Satellite for liftoff

With ESA’s Arctic Weather Satellite due to launch in a few weeks, the satellite is now at the Vandenberg Space Force Base in California being readied for its big day. Once in orbit, this new mission will show how short-term weather forecasts in the Arctic and beyond could be improved.

Who is Dr. Kovich in 'Star Trek: Discovery'? The mystery explained

With his trademark suit-and-tie an anomaly among the primary-colored "Star Trek: Discovery" uniforms of the 32nd century, Dr. Kovich always looked like a man out of time. But who is he, really?

10 top tips for planning your 2027 solar eclipse trip

From understanding the weather to seeing the Milky Way, here's how to plan a trip to see the total solar eclipse on Aug. 2, 2027.

Where is the center of the universe?

The universe is undeniably vast, and from our perspective, it may seem like Earth is in the middle of everything. But is there a center of the cosmos, and if so, where is it? If the Big Bang started the universe, then where did it all come from, and where is it going?

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how do we feed ourselves? Sure we can take a load of food with us but for the return trip that’s a lot. If we plan to colonise the red planet we need even more. We have to grow or somehow create food while we are there. The solution is an already wonderfully simple ‘biosphere’ style system; a fish tank! New research suggests fish could be raised in an aquatic system and nutrient rich water can fertilise and grow plants in the regolith! A recent simulation showed vegetables could be grown in regolith fertilised by the fish tank water!

In the next few decades we may well see human beings colonise Mars. The red planet is 54.6 million km away which, even on board a rocket, takes about 7 months to get there! Future colonists could simply have supply ships drop all they need but that becomes ridiculously expensive to sustain and frankly, isn’t sustainable. The lucky people that colonise Mars will just have to find some way to grow what they need. 

If you have watched ‘The Martian’ movie with Matt Damon you will know how unforgiving the Martian environment is. Ok the film was a little out on scientific accuracy in places but it certainly showed how inhospitable it really is there. Matt managed to cultivate a decent crop of potatoes in Martian regolith fertilised in human faeces.This may not be quite so practical in real life and there may be alternative, less smelly – and dangerous – alternatives. 

NASA astronaut, Dr. Mark Watney played by Matt Damon, as he’s stranded on the Red Planet in ‘The Martian’. (Credit: 20th Century Fox)

Taking the assumption that colonists will have to grow fresh produce locally, a team of researchers decided to explore how feasible this might be. On first glance, it may seem not too great an idea after all, the atmosphere is toxic with 95% carbon dioxide (compared to just 0.04% on Earth). There is a similar length of day on Mars but being able to grow crops will require longer periods of lighting. It is possible at least water may be collected from the ice which forms on and in the Martian rocks.  The rocks most certainly have water stored away but organic compounds that we know of. 

The team wanted to see how fish could help and whether the water from the system could be used to impart nutrients into the Martian regolith. To test the idea, they setup an aquaponic system with fish in tanks to generate the nutrient rich liquid.

Continue reading

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope) has been to observe the first galaxies in the Universe – those that existed at Cosmic Dawn. This period is when the first stars, galaxies, and black holes in our Universe formed, roughly 50 million to 1 billion years after the Big Bang. By examining how these galaxies formed and evolved during the earliest cosmological periods, astronomers will have a complete picture of how the Universe has changed with time.

As addressed in previous articles, the results of Webb‘s most distant observations have turned up a few surprises. In addition to revealing that galaxies formed rapidly in the early Universe, astronomers also noticed these galaxies had particularly massive supermassive black holes (SMBH) at their centers. This was particularly confounding since, according to conventional models, these galaxies and black holes didn’t have enough time to form. In a recent study, a team led by Penn State astronomers has developed a model that could explain how SMBHs grew so quickly in the early Universe.

The research team was led by W. Niel Brandt, the Eberly Family Chair Professor of Astronomy and Astrophysics at Penn State’s Eberly College of Science. Their research is described in two papers presented at the 244th meeting of the American Astronomical Society (AAS224), which took place from June 9th to June 13th in Madison, Wisconsin. Their first paper, “Mapping the Growth of Supermassive Black Holes as a Function of Galaxy Stellar Mass and Redshift,” appeared on March 29th in The Astrophysical Journal, while the second is pending publication. Fan Zou, an Eberly College graduate student, was the lead author of both papers.

Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

As they note in their papers, SMBHs grow through two main channels: by accreting cold gas from their host galaxy or merging with the SMBHs of other galaxies. When it comes to accretion, previous research has shown that a black hole’s accretion rate (BHAR) is strongly linked to its galaxy’s stellar mass and the redshift of its general stellar population. “Supermassive black holes in galaxy centers have millions-to-billions of times the mass of the Sun,” explained Zhou in a recent NASA press release. How do they become such monsters? This is a question that astronomers have been studying for decades, but it has been difficult to track all the ways black holes can grow reliably.”

Continue reading

Could nearby stars have habitable exoplanets? NASA's Chandra X-ray Observatory hopes to find out

Astronomers are using the Chandra X-ray Observatory to study stars' radiation and establish the feasibility of exoplanet habitability.