Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

EarthCARE out of the box

After being packed up in Germany, a long voyage to the US and then a month in storage, ESA’s EarthCARE satellite has been carefully lifted out of its transport container so that the team at the launch site can start getting it ready for its big day in May.

Sleeping giant surprises Gaia scientists

Wading through the wealth of data from ESA’s Gaia mission, scientists have uncovered a ‘sleeping giant’. A large black hole, with a mass of nearly 33 times the mass of the Sun, was hiding in the constellation Aquila, less than 2000 light-years from Earth. This is the first time a black hole of stellar origin this big has been spotted within the Milky Way. So far, black holes of this type have only been observed in very distant galaxies. The discovery challenges our understanding of how massive stars develop and evolve. 

More Views of the 2024 Eclipse, from the Moon and Earth Orbit

It’s been just over a week since millions of people flocked to places across North America for a glimpse of moonshadow. The total solar eclipse of April 8th, 2024 was a spectacular sight for many on the ground. From space, however, it was even more impressive as Earth-observing satellites such as GOES-16 captured the sight of the shadow sweeping over Earth.

NASA even got a snap of the eclipse from the Moon, as taken by the Lunar Reconnaissance Orbiter Camera (LROC). Unlike most Earth-based photographers, however, LROC’s view was a tricky one to get. The cameras are line scanners and their images get built up line-by-line. That process requires the spacecraft to slew to keep up with the action and build up a complete view. Amazingly, it took only 20 seconds to capture all the action.

A short video of the eclipse shadow along the path of totality, captured by NASA’s Deep Space Climate Observatory.

NASA’s Deep Space Climate Observatory got an amazing view from Earth orbit, capturing the entire eclipse as it passed over the continent. That observatory “lives” out at LaGrange Point 1, which enabled it to get a full view of Earth and the Moon’s shadow.

For most viewers, the chase to see an eclipse meant driving (or flying) to somewhere along the path of totality to get the best view. That path stretched from the Pacific Ocean off the coast of Mexico up toward the northern Canadian provinces. That meant a wide swath of the U.S. experienced totality. Or course, the weather had to be good to see it all. In most places, that actually turned out reasonably well. Social media immediately came alive with images of the eclipse, people enjoying it, and others waiting vainly for a break in the clouds.

A composite of images taken during the total solar eclipse showing all the phases leading up to and after totality. NASA/Keegan Barber.

A projection of the partially eclipsed Sun on the stack of a cruise ship off the coast of Mazatlan. Image credit: Carolyn Collins Petersen.
A pilot flying a WB-57 jet during the total solar eclipse on April 8, 2024.
NASA/Mallory Yates
A view of the eclipse shadow from the International Space Station. Courtesy NASA.
Continue reading

NASA requests proposals to reduce cost, timeline of Mars Sample Return mission

This illustration shows a concept for multiple robots that would team up to ferry to Earth samples of rocks and soil being collected from the Martian surface by NASA’s Mars Perseverance rover.
Credit: NASA/ESA/JPL-Caltech

NASA is going back to square one when it comes to many aspects of its Mars Sample Return mission in response to independent reviews that showed ballooning costs and significant schedule delays.

The current architecture called for no less than five separate vehicles to transport back to Earth more than two dozen samples collected on the Martian surface by the Perseverance rover, which has been traveling the Red Planet since 2021 and is the first of those.

“Every indication that we’ve had from the independent review boards, plus the [Inspector General], that this thing could cost up to $11 billion, which would cause NASA to have to cannibalize other programs,” Nelson said, referring to science programs, like the Dragonfly mission to Saturn’s moon, Titan, and the Near-Earth Object (NEO) Surveyor mission to find and track potentially hazardous objects.

That cost estimate of $11 billion came from the second MSR Independent Review Board (IRB-2) analysis in which it estimated needing between $850 million and $1 billion annually during the development period. Nelson pointed out that the Decadal Survey, an assessment of priorities from the science community via the National Science Foundation created every ten years, argued that it should cost approximately between $5 and $7 billion.

He described the $11 billion projection as being “too expensive” and a 2040 sample return date as being “unacceptably too long.”



Continue reading

Baby Stars Discharge “Sneezes” of Gas and Dust

I’m really not sure what to call it but a ‘dusty sneeze’ is probably as good as anything. We have known for some years that stars surround themselves with a disk of gas and dust known as the protostellar disk. The star interacts with it, occasionally discharging gas and dust regularly. Studying the magnetic fields revealed that they are weaker than expected. A new proposal suggests that the discharge mechanism ‘sneezes’ some of the magnetic flux out into space. Using ALMA, the team are hoping to understand the discharges and how they influence stellar formation. 

In a fairly inconspicuous part of the Galaxy, a star slowly formed out of a cloud of gas and dust. This event took place around 4.6 billion years ago and soon, the hot young star began to clear the surrounding area of gas and dust. What remained was a disk surrounding the star known as a protostellar disk. Eventually the planets of our Solar System formed. It is not unique to our own system though as there have been disks like this found around many stars. A very well known example are the stars in the Trapezium cluster inside the Orion Nebula. 

Behind the Gas and Dust of Orion’s Trapezium Cluster

A team in Japan, from the Kyushu University have been examining data from the ALMA radio telescope to learn more about stars in the earliest stages of development. To their surprise they discovered the disks around new stars seem to emit jets or plumes of dust and gas and even electromagnetic energy. The team dubbed them ‘sneezes’ and its this process that seems to slowly erode the magnetic flux of a young star system. 

ALMA’s high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

One phenomenon of the disks is a powerful magnetic field which permeates through the region. It therefore carries a magnetic flux and herein lies the problem. The magnetic fields would be far stronger than those observed if the magnetic flux had been retained from day one. History shows us, they didn’t seem to retain them so the flux has been slowly eroded away in new star and planetary systems. 

One such proposal was that the field slowly decreased as the surrounding dust cloud collapsed into the core of the star. To explore the phenomenon the team studied MC 27, a system 450 light years away using ALMA, the Atacama Large Millimetre Array. In total, 66 radio telescopes pointed to the object from an altitude of 5,000 metres. They found that there were ‘spike like’ structures that seemed to extend out by a few astronomical units (average distance between Sun and Earth.)

ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

Continue reading

The 2024 solar eclipse was a teachable moment in more ways than one

The total solar eclipse of 2024 was an epic experience to share with my daughter. It was one part celestial event, one part college prep.

Iconic British meteorite 'Winchcombe' found to have a smashing past

A detailed analysis of the Winchcombe meteorite has found evidence that its parent asteroid was altered by water before being smashed apart multiple times.

How Did Pluto Get Its Heart? Scientists Suggest an Answer

The most recognizable feature on Pluto is its “heart,” a relatively bright valentine-shaped area known as Tombaugh Regio. How that heart got started is one of the dwarf planet’s deepest mysteries — but now researchers say they’ve come up with the most likely scenario, involving a primordial collision with a planetary body that was a little more than 400 miles wide.

The scientific term for what happened, according to a study published today in Nature Astronomy, is “splat.”

Astronomers from the University of Bern in Switzerland and the University of Arizona looked for computer simulations that produced dynamical results similar to what’s seen in data from NASA’s New Horizons probe. They found a set of simulations that made for a close match, but also ran counter to previous suggestions that Pluto harbors a deep subsurface ocean. They said their scenario doesn’t depend on the existence of a deep ocean — which could lead scientists to rewrite the history of Pluto’s geological evolution.

An artist’s conception shows the presumed collision of a planetary body with Pluto. (Thibaut Roger/University of Bern)

University of Arizona astronomer Adeene Denton, one of the study’s co-authors, said the formation of the heart “provides a critical window into the earliest periods of Pluto’s history.”

“By expanding our investigation to include more unusual formation scenarios, we’ve learned some totally new possibilities for Pluto’s evolution,” Denton said in a news release. Similar scenarios could apply to other objects in the Kuiper Belt, the ring of icy worlds on the edge of our solar system.

Continue reading

The Milky Way’s Role in Ancient Egyptian Mythology

Look through the names and origins of the constellations and you will soon realise that many cultures had a hand in their conceptualisation. Among them are the Egyptians who were fantastic astronomers. The movement of the sky played a vital role in ancient Egypt including the development of the 365 day year and the 24 hour day. Like many other cultures they say the Sun, Moon and planets as gods. Surprisingly though, the bright Milky Way seems not to have played a vital role. Some new research suggests that this may not be the case and it may have been a manifestation of the sky goddess Nut! 

It’s a fairly well accepted theory that the pyramids of Egypt were constructed in some way as a representation of or tribute to the sky. The Sun god Ra was often depicted sailing the Sun across the sky in a boat but the Milky Way was never seemed to be a big part, other than perhaps some consideration that the river Nile could represent it. 

Nile River, Lake Nasser and the Red Sea, Egypt

Back in the days of ancient Egypt, light pollution really wasn’t a thing. The Milky Way would have been far more prominent than for many stargazers today. A recent study by astrophysicists at the University of Portsmouth suggest that a lesser heard god by the name of Nut had something to do with it. 

Hunt through Egyptian artwork and you will often see a star-filled woman arched over another person. The woman is Nut, the goddess of the sky and the other figure represents her brother, the god of Earth, Geb. Nut has a very specific job though, she protects the Earth from being flooded from waters of the void! Presumably this would be the void of space but of course back then we didn’t have such a great understanding of the cosmos. She also swallowed the Sun as it sets, giving birth to it again in the morning. 

Thankfully the Egyptians were fabulous at recording things and so there have been plenty of Egyptian texts to refer to. Running simulations from the evidence in the documents, the team (led by Dr Or Graur Associate Professor in Astrophysics) suggest that the Milky Way represented Nut’s outstretched arms in the winter and her backbone in the summer. This suggestion aligns with the broad patterns in the Milky Way. 

The arch of the Milky Way seen over Bisei Town in Japan. It prides itself on its dark skies, but faces scattered light pollution from other nearby municipalities. Courtesy DarkSky.Org.
Continue reading

Object that slammed into Florida home was indeed space junk from ISS, NASA confirms

The small object that crashed through the roof of a Florida home last month was indeed part of a pallet jettisoned from the ISS three years ago, NASA has confirmed.

Venus is leaking carbon and oxygen, a fleeting visit by BepiColombo reveals

BepiColombo spotted an outpour of carbon and oxygen atoms in Venus' fragile magnetic environment

I flew Boeing's Starliner spacecraft in 4 different simulators. Here's what I learned (video, photos)

Boeing Starliner astronauts spent hundreds of hours in simulators preparing for Crew Test Flight, which lifts off May 6. I got a brief taste of what they experienced.

NASA's Mars sample return plan is getting a revamp: 'The bottom line is that $11 billion is too expensive'

NASA is asking its various research centers as well as private industry for new ideas about how to get Mars samples back to Earth relatively quickly and cost-effectively.

NASA astronaut Loral O'Hara missed the total solar eclipse, but saw Earth 'moving' below her during spacewalk (photos)

NASA astronaut Loral O'Hara missed watching an eclipse from the ISS by days. But she did participate in the 4th all-woman spacewalk, and has a unique story about a baby octopus.

NASA Struggles to Find Way Forward for Mars Sample Return

NASA's Perseverance mission has been collecting samples for later retrieval and return to Earth. Now, it's unclear how we'll get those samples home.

The post NASA Struggles to Find Way Forward for Mars Sample Return appeared first on Sky & Telescope.

You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field

In 2011, astronomers with the Wide Angle Search for Planets (WASP) consortium detected a gas giant orbiting very close to a Sun-like (G-type) star about 700 light-years away. This planet is known as WASP-39b (aka. “Bocaprins”), one of many “hot Jupiters” discovered in recent decades that orbits its star at a distance of less than 5% the distance between the Earth and the Sun (0.05 AU). In 2022, shortly after the James Webb Space Telescope (JWST) it became the first exoplanet to have carbon dioxide and sulfur dioxide detected in its atmosphere.

Alas, researchers have not constrained all of WASP-39b’s crucial details (particularly its size) based on the planet’s light curves, as observed by Webb. which is holding up more precise data analyses. In a new study led by the Max Planck Institute for Solar System Research (MPS), an international team has shown a way to overcome this obstacle. They argue that considering a parent star’s magnetic field, the true size of an exoplanet in orbit can be determined. These findings are likely to significantly impact the rapidly expanding field of exoplanet study and characterization.

The study was led by Dr. Nadiia M. Kostogryz and her fellow researchers from the MPS. They were joined by astronomers and astrophysicists from the Center for Astronomy (Heidelberg University), the Astrophysics Group at Keele University, the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT), and the Space Telescope Science Institute (STScI). The paper describing their research, “Magnetic origin of the discrepancy between stellar limb-darkening models and observations,” was recently published in Nature Astronomy.

The “hot Jupiter” exoplanet WASP-69b orbits its star so closely that its atmosphere is being blown into space. Credit: Adam Makarenko/W. M. Keck Observatory

A light curve is the measurement of a star’s brightness over longer periods. Using the Transit Method (Transit Photometry), astronomers monitor stars for periodic dips in brightness, which can result from an exoplanet passing (transiting) in front of their face relative to the observer. In addition to being the most widely used method for detecting exoplanets, precise observations of light curves allow astronomers to estimate the size and orbital period of the exoplanets.


Continue reading

These 3 stars are losing weight fast — thanks to stellar winds way stronger than the sun's

Astronomers have measured the stellar winds of three sun-like stars for the first time, finding that the objects are losing mass at a rate as great as 67 times the speed at which our star sheds matter.

Do black holes hide the secrets of their ancestors?

Some black holes are so massive they were likely created as smaller black holes that merged. Maybe we can use such black hole "children" to learn about the black hole "ancestors."

See What Happens When Stars Collide

A star in the constellation Norma appears to have been created when two stars merged.

The post See What Happens When Stars Collide appeared first on Sky & Telescope.

Planetary defenders assemble!

Image: Planetary defenders assemble!


SpaceZE.com