Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

International Space Development Conference 2024 beams up Star Trek's William Shatner and more in Los Angeles

The stars of Star Trek are about to get a taste of real-life space exploration when they beam into the 2024 International Space Development Conference in Los Angeles this weekend.

China launches test satellite to very low Earth orbit (video)

China launched four satellites on Tuesday (May 21) to test out new technologies. The spacecraft went up on the third-ever launch of the Kuaizhou-11 solid rocket.

Astronomers Propose a 14-Meter Infrared Space Telescope

The Universe wants us to understand its origins. Every second of every day, it sends us a multitude of signals, each one a clue to a different aspect of the cosmos. But the Universe is the original Trickster, and its multitude of signals is an almost unrecognizable cacophony of light, warped, shifted, and stretched during its long journey through the expanding Universe.

What are talking apes to do in this situation but build another telescope adept at understanding a particular slice of all this noisy light? That’s what astronomers think we should do, to nobody’s surprise.

Due to the size of the Universe and its ongoing expansion, light from the Universe’s first galaxies is stretched into the infrared. This ancient light holds clues to the Universe’s origins and, by extension, our origins. It takes a powerful infrared telescope to sense and decipher this light. Earth’s atmosphere blocks infrared light which is why we keep building infrared space telescopes.

Infrared telescopes are also well-suited to observing planets as they form. Dense environments like protoplanetary disks are opaque to most light, but infrared light can reveal what’s going on in these planet-forming environments. The dust absorbs light, then emits it in the infrared, and also scatters it. That confounds optical telescopes, but infrared telescopes like SALTUS are designed to deal with it.

A team of astronomers from the USA and Europe has joined the chorus calling for a new infrared space telescope. It’s tentatively called SALTUS, the Single Aperture Large Telescope for Universe Studies. In a new paper, the astronomers outline the science case for SALTUS.

SALTUS' far IR observing capabilities will let it see a portion of protoplanetary disks that are obscured in other wavelengths. This will open a new window into planet formation and how habitability develops. Image Credit: Chin et al. 2025/Miotello et al. Protostars and Planets 2023.
This simple graphic shows how water arrives on planets and can lead to habitability. SALTUS will follow the water's journey by observing hundreds of protoplanetary disks. Image Credit: Chin et al. 2024.
Continue reading

SpaceX Dragon joins Mercury and Apollo capsules on display in Chicago

A twice-flown SpaceX capsule has debuted at the Griffin Museum of Science and Industry in Chicago, next to a Mercury spacecraft and an Apollo command module.

Satellite data reveals Antarctica's Thwaites Glacier is melting faster than we thought

The ICEYE satellite constellation has given researchers a peek beneath the glacier, and it's not looking good.

A New Venus-Sized World Found in the Habitable Zone of its Star

The parade of interesting new exoplanets continues. Today, NASA issued a press release announcing the discovery of a new exoplanet in the Gliese 12 system, sized somewhere between Earth and Venus and inside the host star’s habitable zone. Two papers detail the discovery, but both teams think that the planet is an excellent candidate for follow-up with the James Webb Space Telescope (JWST) to try to tease out whether it has an atmosphere and, if so, what that atmosphere is made of.

But before JWST knew where to look, another workhorse of the exoplanet hunt had to do its job. The Transiting Exoplanet Survey Satellite (TESS) found this planet in a system only 40 light years away. That would make it the closest known example of a rocky, Earth or Venus-sized exoplanet in its star’s habitable zone.

Gliese 12 is a red dwarf, only weighing about 27% of the Sun’s weight. Due to the intricacies of fusion, this amounts to the star outputting about 60% of the light of our Sun, which, in turn, means its habitable zone is much closer than our own. The planet, known as Gliese 12b, orbits its parent star once every 12.8 days. But more importantly, it receives about 85% of the energy that Venus typically receives from the Sun.

Fraser discusses some of the accomplishments of TESS.

The similarity between our closest neighbor and this exoplanet is striking. It could also lead to new discoveries about the formation of our solar system. Current theory holds that Venus and the Earth originally had an atmosphere and then lost it. They diverged to become the Eden-like Earth and the hell-like Venus because of one crucial substance – water.  

Venus’ atmosphere lacked water, so when its current atmosphere started to form, none of the liquid necessary for life as we know it was available. Earth, on the other hand, had plenty of water to spare, allowing it to eventually develop life and humans to evolve there.

Continue reading

SpaceX to launch 3rd mission in 2 days this evening

SpaceX plans to launch 23 more of its Starlink internet satellites from Florida this evening (May 23). It will be the third mission in two days for the company.

NASA space telescope finds Earth-size exoplanet that's 'not a bad place' to hunt for life

NASA exoplanet-hunter TESS has found a temperate, Earth-size world in the habitable zone of its red dwarf star. This planet could make waves in the search for life.

'Death Star' black holes caught blasting powerful beams at multiple targets: Watch out Alderaan! (video)

Supermassive black holes that are blasting out beams of high-energy particles killing star formation in their galaxies are shifting targets like real-life Death Stars.

Holy Stone HS900 Sirius drone review

The Holy Stone HS900 adds another attractive option in the sub-250g drone category thanks to great flight performance.

Space Force wants 7 new telescopes in Hawaii. Local residents say 'no'

Some Hawaii residents oppose plans from the U.S. Space Force to build a suite of new telescopes designed to track and prevent satellites in orbit from colliding.

Where will the 2027 total solar eclipse on Aug. 2 be visible?

A total solar eclipse on Aug 2, 2027, will be visible across southern Europe, North Africa and the Middle East. Find out more about where to see the 'eclipse of the century' in our guide.

'Star Trek: Discovery' season 5 episode 9 offers a tense but questionable cliffhanger

Possibly a couple of missed opportunities, but nonetheless a solid first part of a series finale. And when was the last time a sci-fi show ended on its own terms without being cancelled?

Cool by design 3D printing

Image: Cool by design 3D printing

Things are finally looking up for the Voyager 1 interstellar spacecraft

Voyager 1's mission has been tumultuous lately, but scientists on the probe's flight team have turned optimistic about the situation.

ESA's Euclid celebrates first science with sparkling cosmic views

Today, ESA’s Euclid space mission releases five unprecedented new views of the Universe. The never-before-seen images demonstrate Euclid’s ability to unravel the secrets of the cosmos and enable scientists to hunt for rogue planets, use lensed galaxies to study mysterious matter, and explore the evolution of the Universe.

ESA's Euclid celebrates first science with sparkling cosmic views

Video: 00:07:21

ESA is releasing a new set of full-colour images captured by the space telescope Euclid.

Five new portraits of our cosmos were captured during Euclid’s early observations phase, each revealing amazing new science. Euclid’s ability to unravel the secrets of the cosmos is something you will not want to miss. 

Webb Explains a Puffy Planet

I love the concept of a ‘puffy’ planet! The exoplanets discovered that fall into this category are typically the same size of Jupiter but 1/10th the mass! They tend to orbit their host star at close in orbits and are hot but one has been found that is different from the normal. This Neptune-mass exoplanet has been thought to be cooler but still have a lower density. The James Webb Space Telescope (JWST) has recently discovered that tidal energy from its elliptical orbit keeps its interior churning and puffs it out. 

WASP-107b is more than three quarters the volume of Jupiter but, like most fluffy planets, is one-tenth the mass making it one of the least dense planets known. Its unusual property however is that whilst most puffy planets are hot, WASP-107b is relatively cool. This goes against initial observations which had also suggested, due to its mass, radius and age it was thought to have a small rock core with a hydrogen and helium rich atmosphere.

Recent observations of this exoplanet by the JWST revealed far less methane in the atmosphere than expected. The orientation of the orbit making it edge on to us means we can study the planet’s atmosphere by examining the light from the star as it passes through the gas. This technique known as transmission spectroscopy can be used to identify the signatures of gasses in the star’s spectrum. Using JWSTs Near-Infrared Camera and Mid-Infrared Instrument and data from Hubble’s Wide Field Camera 3, the abundances of methane, water vapour, carbon dioxide, carbon monoxide, sulphur dioxide and ammonia could be revealed.

Artist impression of the James Webb Space Telescope

Not only did this reveal the lack of methane but also provided evidence that hot gas from lower altitudes was mixing with cooler gas layers from higher up. One of the properties of methane is that it is unstable at high temperatures and, beyond 1200 degrees the bonds between hydrogen and carbon breakdown. This is not the case with other carbon based molecules suggesting the higher temperature.  It suggests that the interior of the planet must be hotter than thought with a more massive core than expected. It’s thanks to JWST’s higher level of sensitivity that the mystery looks like it may finally have been solved.

The team, led by Luis Welbanks from Arizona State University (ASU) explored a number of possibilities. First that it had more mass in its core than first expected. If this was true then the atmosphere is likely to have contracted as the planet cooled. In time and, without a source of heat to give the atmosphere energy and cause it to expand, the planet should be much smaller than observed. Even though the planet orbits the star at a distance of of just over 8 million kilometres it still does not get enough energy to drive the inflation of the atmosphere. 

Continue reading

Iceberg A-83 breaks free

Image: An iceberg roughly the size of the Isle of Wight has broken off the Brunt Ice Shelf in Antarctica on 20 May.

The Largest Camera Ever Built Arrives at the Vera C. Rubin Observatory

It’s been 20 years in the making, but a 3200-megapixel camera built especially for astrophysics discoveries has finally arrived at its home. The Legacy of Space and Time (LSST) camera was delivered to the Vera C. Rubin Observatory in Chile in mid-May, 2024.

The camera traveled from its construction lab at the SLAC National Accelerator Laboratory. The technical crew outfitted it with specialized data loggers, monitors, and GPS attached to track the conditions of its trip. Then they put it into a specially built container and the whole assemblage made the trip from San Francisco airport to Santiago on the 14th of May via a chartered flight. Once in Chile, it traveled up to the site for five hours up a 35-kilometer dirt road. It arrived on the 16th, completing a huge step toward opening the Rubin Observatory, according to construction project manager. “Getting the camera to the summit was the last major piece in the puzzle,” he said. “With all Rubin’s components physically on-site, we’re on the home stretch towards transformative science with the LSST.”

This video documents the journey of the LSST Camera from SLAC National Accelerator Laboratory in California to Rubin Observatory on the summit of Cerro Pachón in Chile. The camera arrived on the summit on 16 May 2024. Credit:RubinObs/NSF/AURA/S. Deppe/O. Bonin, T. Lange, M. Lopez, J. Orrell (SLAC National Lab)

The LSST Camera is the final major component of Rubin Observatory’s Simonyi Survey Telescope to arrive at the summit. It’s about the size of a small car. Inside, its focal plane contains 189 CCD sensors arranged on an array of “rafts”. The sensors deliver a combined 3200-megapixel view.

Now that it has arrived, the camera undergoes several months of testing in the observatory’s white room. After that, it goes on the Simonyi Survey Telescope, with its newly-coated 8.4-meter mirror and 3.4-meter secondary mirror.

This unique observatory is named after astronomer Vera C. Rubin. Her work focused on the mysterious “dark matter” that seems to permeate the Universe. Along with her team, she studied dozens of galaxies to understand what was influencing their motions. It turned out to be dark matter. The search for dark matter and its existence throughout the Universe is one of the main goals of the observatory that now bears her name.

View of Rubin Observatory at sunset in December 2023. The 8.4-meter telescope at Rubin Observatory, equipped with the highest-resolution digital camera in the world, will take enormous images of the southern hemisphere sky, covering the entire sky every few nights. Rubin will do this over and over for 10 years, creating a timelapse view of the Universe that’s unlike anything we’ve seen before. What new Solar System exploration missions will of these observations inspire? Image Credit: RubinObs/NSF/AURA/H. Stockebrand
Continue reading

SpaceZE.com