Exoplanets are a fascinating aspect of the study of the Universe. TRAPPIST-1 is perhaps one of the most intriguing exoplanet systems discovered to date with no less than 7 Earth-sized worlds. They orbit a red dwarf star which can unfortunately be a little feisty, hurling catastrophic flares out into space. These flares could easily strip atmospheres away from the alien worlds rendering them uninhabitable. A new piece of research suggests this may not be true and that the rocky planets may be able to maintain a stable atmosphere after all.
Space News & Blog Articles
The TRAPPIST-1 system is a science-fiction writer’s dream. Seven Earth-sized worlds orbit a red dwarf star just 40 light-years away. Three of those worlds are within the habitable zone of the star. The system spans a distance less than 25 times that of the distance from the Earth to the Moon. Oh, what epic tales a TRAPPIST civilization would have! That is, if life in such a system is even possible…
Moons are the norm in our Solar System. The International Astronomical Union recognizes 288 planetary moons, and more keep being discovered. Saturn has a whopping 146 moons. Every planet except Mercury and Venus has moons, and their lack of moons is attributed to their small size and proximity to the Sun.
Infrared astronomy has revealed so much about the Universe, ranging from protoplanetary disks and nebulae to brown dwarfs, aurorae, and volcanoes on together celestial bodies. Looking to the future, astronomers hope to conduct infrared studies of supernova remnants (SNRs), which will provide vital information about the physics of these explosions. While studies in the near-to-mid infrared (NIR-MIR) spectrum are expected to provide data on the atomic makeup of SNRs, mid-to-far IR (MIR-FIR) studies should provide a detailed look at heated dust grains they eject into the interstellar medium (ISM).
The odds are good that we are not alone in the Universe. We have found thousands of exoplanets so far, and there are likely billions of potentially habitable planets in our galaxy alone. But finding evidence of extraterrestrial life is challenging, and even the most powerful telescopes we currently have may not produce definitive proof. But there are telescopes in the pipeline that may uncover life. It will be decades before they are built and launched, but when they are, which systems should they target first? That’s the question answered in a recent paper.
Remember that amazing “first image” of Sagittarius A* (Sgr A) black hole at the heart of the Milky Way? Well, it may not be completely accurate, according to researchers at the National Astronomical Observatory of Japan (NAOJ). Instead, the accretion disk around Sgr A* may be more elongated, rather than the circular shape we first saw in 2022.
The source of Earth’s water is an enduring mystery that extends to exoplanets and the notion of habitability. In broad terms, Earth’s water was either part of the planet from the beginning of its formation in the solar nebula or delivered later, maybe by asteroids and comets.
The arrival of spacecraft on alien worlds uses a number of different techniques from giant air bags to parachutes and small rockets. The use of rockets can pose a problem to onboard technology though as the dust kicked up can effect sensors and cameras and the landing site can be disturbed in the process. A team of researchers have developed a new instrument that can measure the dust that is kicked up on landing to inform future instrument design.
China has some bold plans for space research and exploration that will be taking place in the coming decades. This includes doubling the size of their Tiangong space station, sending additional robotic missions to the Moon, and building the International Lunar Research Station (ILRS) around the lunar south pole. They also hope to begin sending crewed missions to Mars by 2033, becoming the first national space agency to do so. Not to be left behind in the commercial space sector, China is also looking to create a space tourism industry that offers suborbital flights for customers.
It was 1969 that humans first set foot on the Moon. Now, over 50 years later we are setting sights on building lunar bases. The ability to complete that goal is dependent on either transporting significant amounts of material to the Moon to construct bases or somehow utilising raw lunar materials. A team of Chinese researchers have developed a technique to create bricks from material that is very similar to the soil found on the Moon. The hope is that the lunar soil can in the future, be used to build bricks on the Moon.
Neutron stars and black holes are the remnants of dead stars. They typically form as part of a supernova explosion, where the outer layers of an old star are violently cast off while the core of the star collapses to form the remnant. This violent origin can have significant consequences for both the remnant and the surrounding environment.
Sending an object to another star is still the stuff of science fiction. But some concrete missions could get us at least part way there. These “interstellar precursor missions” include a trip to the Solar Gravitational Lens point at 550 AU from the Sun – farther than any artificial object has ever been, including Voyager. To get there, we’ll need plenty of new technologies, and a recent paper presented at the 75th International Astronautical Congress in Milan this month looks at one of those potential technologies – electric propulsion systems, otherwise known as ion drives.
This stunning image of a star cluster in the Small Magellanic Cloud (SMC) is more than just a pretty picture. It’s part of a scientific effort to understand star formation in an environment different from ours. The young star cluster is called NGC 602, and it’s very young, only about 2 or 3 million years old.
One of the many threats facing space travellers and indeed our own planet is that of Solar Storms. At their most minor they can grant polar latitudes with a gentle auroral display but at their most extreme they can pose a threat to technology in space, communications and even our atmosphere. Now a team of researchers have found that extreme space weather can leave its mark in tree rings, leaving evidence that can help guard against future severe events.
Everybody knows that for life to thrive on any world, you need water, warmth, and something to eat. It’s like a habitability mantra. But, what other factors affect habitability? What if you relaxed the conditions conducive to life? Would it still exist? If so, what would it be?
Nestled on the slopes of Cerro La Negra at an elevation of 13,000 feet is an unusual-looking observatory. Known as the High-Altitude Water Cherenkov (HAWC) observatory, it looks like a tightly packed collection of grain silos, which is essentially what it is. But rather than holding grain, the silos are each filled with 188,000 liters of water and four photomultiplier tubes. While it’s an unusual setup, it’s what you need to observe high-energy gamma rays from deep space.
Some of the most cataclysmic and mysterious events in the cosmos only reveal themselves by their gravitational waves. We’ve detected some of them with our ground-based detectors, but the size of these detectors is limited. The next step forward in gravitational wave (GW) astronomy is a space-based detector: LISA, the Laser Interferometer Space Antenna.
Since the 1960s, astronomers have theorized that the Universe may be filled with a mysterious mass that only interacts with “normal matter” via gravity. This mass, nicknamed Dark Matter (DM), is essential to resolving issues between astronomical observations and General Relativity. In recent years, scientists have considered that DM may be composed of axions, a class of hypothetical elementary particles with low mass within a specific range. First proposed in the 1970s to resolve problems in the Standard Model of particle physics, these particles have emerged as a leading candidate for DM.
Testing is one of the unsung steps in the engineering process. Talk to any product development engineer, and they will tell you how big of a milestone passing “V&V” – or verification and validation – testing is. Testing is even more critical when you work on equipment meant for the harsh space environment. It is also more challenging to mimic those harsh environments on Earth. Luckily for some of NASA’s more critical upcoming missions, another government agency has a unique test lab to help V&V with some of its most critical components – their heat shields.
Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.
The word “volatile” is commonly used in the space exploration community, but it has a different meaning than when used otherwise. In space exploration, volatiles are defined as the six most common elements in living organisms, plus water. Earth had enough volatiles for life to start here, but it might not have been that way. Researchers from the University of Cambridge and Imperial College London now think they have a reason why Earth received as many volatiles as it did – and thereby allowed it to develop life in the first place.