With ‘Thousand Sails,’ China joins the race to fill up Low Earth Orbit with mega-satellite constellations.
Space News & Blog Articles
Most of us know about the impact that wiped out the dinosaurs about 66 million years ago. It’s a scientific fact that’s entered mainstream knowledge, maybe because so many of us shared a fascination with dinosaurs as children. However, it’s not the only catastrophic impact that shaped life on Earth.
Ships passing in the night used Morse code sent with lanterns and shutters to communicate. That same basic principle has allowed NASA to communicate with Psyche, its mission to a metal-rich asteroid in the main belt. However, the “light” was a version of heat, and instead of being able to see each other, Psyche is 240 million miles away from Earth. Oh, and the upload rate of the data it sent is still better than old dial-up internet connections that were prevalent not so long ago.
The elliptical galaxy NGC 1270 lies about 240 million light-years away. But it’s not alone. It’s part of the Perseus Cluster (Abell 426), the brightest X-ray object in the sky and one of the most massive objects in the Universe.
The massive South Pole-Aitken (SPA) basin is one of the Moon’s dominant features, though it’s not visible from Earth. It’s on the lunar far side, and only visible to spacecraft. It’s one of the largest impact features in the Solar System, and there are many outstanding questions about it. What type of impactor created it? Where did the ejected material end up? Is it feasible or worthwhile to explore it?
In this decade and the next, multiple space agencies will send crewed missions to the Moon for the first time since the Apollo Era. These missions will culminate in the creation of permanent lunar infrastructure, including habitats, using local resources – aka. In-situ resource utilization (ISRU). This will include lunar regolith, which robots equipped with additive manufacturing (3D printing) will use to fashion building materials. These operations will leverage advances in teleoperation, where controllers on Earth will remotely operate robots on the lunar surface.
For most of human history, the Sun appeared stable. It was a stoic stellar presence, going about its business fusing hydrogen into helium beyond our awareness and helping Earth remain habitable. But in our modern technological age, that facade fell away.
Unistellar’s new Odyssey Pro telescope offers access to deep-sky astrophotography in a small portable package.
On July 1st, 2023 (Canada Day!), the ESA’s Euclid mission lifted off from Cape Canaveral, Florida, atop a SpaceX Falcon 9 rocket. As part of the ESA’s Cosmic Vision Programme, the purpose of this medium-class mission was to observe the “Dark Universe.” This will consist of observing billions of galaxies up to 10 billion light-years away to create the most extensive 3D map of the Universe ever created. This map will allow astronomers and cosmologists to trace the evolution of the cosmos, helping to resolve the mysteries of Dark Matter and Dark Energy.
The search for exoplanets has grown immensely in recent decades thanks to next-generation observatories and instruments. The current census is 5,766 confirmed exoplanets in 4,310 systems, with thousands more awaiting confirmation. With so many planets available for study, exoplanet studies and astrobiology are transitioning from the discovery process to characterization. Essentially, this means that astronomers are reaching the point where they can directly image exoplanets and determine the chemical composition of their atmospheres.
In 1995, Caltech researchers at the Institute’s Palomar Observatory first observed what appeared to be a brown dwarf orbiting Gliese 229 – a red dwarf star located about 19 light-years from Earth. Since then, this brown dwarf (Gliese 229 B) has mystified astronomers because it appeared too dim for its mass. With 70 times the mass of Jupiter, it should have been brighter than what telescopes had observed. However, a Caltech-led international team of astronomers recently solved the mystery by determining that the brown dwarf is a pair of closely orbiting twins!
The Artemis program involves impressive technological advancements in robotics, communications, spacecraft, and advanced habitats, all of which are clearly necessary for such an ambitious endeavour. But the mission also requires updated spacesuits. Those spacesuits are critical to mission success, and the Italian luxury fashion house Prada is adding their knowledge and experience to the design.
Testing the equipment on an interstellar mission is one of the first things operators do when the spacecraft successfully launches. In some cases, those tests show the future troubles the mission will face, such as what happened to NASA’s Lucy mission a few years ago. However, in some cases, the mission provides us with perspectives we might never have seen before, which was the case for Hera, ESA’s mission to Dimorphos. This asteroid was deflected successfully during NASA’s DART test in 2022.
We live inside the Milky Way galaxy which is joined as it drifts through space by two satellite galaxies, the Magellanic Clouds. A star cluster in the Large Magellanic Cloud known as R136 has been the subject of a fascinating discovery. A team of astronomers have discovered 55 high-speed stars that have been ejected from the cluster. The discovery was made using the Gaia satellite and it seems up to a third of stars from the cluster have been ejected in the last century.
China’s space program has advanced considerably since the turn of the century. In addition to developing heavy-launch vehicles like the Long March 5 and building a modular space station in orbit, China has also embarked on an ambitious program of lunar exploration (Chang’e) – which has launched six robotic missions to explore the Moon’s surface since 2007. These missions are paving the way for crewed missions to the Moon by 2030 and creating a permanent habitat around the Moon’s southern polar region – the International Lunar Research Station (ILRS).
Jupiter is well known for its Great Red Spot, a feature that was discovered by Galileo over 400 years ago! Astronomers have been tracking the size and shape of it for over a century but the most accurate measurements have come from the Hubble Space Telescope. Every time Earth and Jupiter are at their closest, Hubble takes a series of images and it’s these images that have detected that the spot jiggles from day to day. Not only does it change size but length and width too leaving astronomers baffled.
Ever since the advent of space exploration we have seen some amazing images of the planets. New technology often brings with it a new perspective and we have been reminded of this again just recently with images from the Hubble Space Telescope (HST) and New Horizons spacecraft. The two objects simultaneously imaged Uranus from different perspectives in an attempt to predict what astronomers would see when they look at exoplanets orbiting other stars.
The X-37B Orbital Test Vehicle (OTV) has been shrouded in mystery since its maiden flight in 2011. Designed by Boeing and operated by the U.S. Space Force (USSF), this remotely operated, reusable space plane is designed to operate in Low-Earth Orbit (LEO), 240 to 800 km (150 to 500 mi) above the Earth, and test reusable vehicle technologies that support long-term space objectives. On December 29th, 2023, the X-37B began its seventh mission (OTV-7) and has reportedly been conducting experiments on the effects of space radiation and testing Space Domain Awareness (SDA) technologies.
There are four fundamental forces in the Universe. These forces govern all the ways matter can interact, from the sound of an infant’s laugh to the clustering of galaxies a billion light-years away. At least that’s what we’ve thought until recently. Things such as dark matter and dark energy, as well as a few odd interactions in particle physics, have led some researchers to propose a fifth fundamental force. Depending on the model you consider, this new force could explain dark matter and cosmic expansion, or it could interact with elemental particles we haven’t yet detected. There are lots of theories about this hypothetical force. What there isn’t a lot of is evidence. So a new study is looking for evidence in the orbits of asteroids.
Cosmology has had several ground-breaking discoveries over the last 100+ years since Einstein developed his theory of relativity. Two of the most prominent were the discovery of the Cosmic Microwave Background (CMB) in 1968 and the confirmation of gravitational waves in 2015. Each utilized different tools, but both lent credence to the Big Bang Theory, which relates to the universe’s formation. However, we still don’t understand a vital part of that formation, and a new review paper by Rishav Roshan and Graham White at the University of Southampton suggests that we might be able to make some headway on our one-second “gap” in knowledge by using our newfound understanding of gravitational waves.
The early Universe continues to offer surprises and the latest observations of infant galaxies are no exception. Astronomers found a surprisingly Milky Way-like galaxy that existed more than 13 billion years ago. That was a time when the Universe was really just an infant and galaxies should still be early in their formation. A well-formed one in such early history is a bit of a surprise.