Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

If We Want to Visit More Asteroids, We Need to Let the Spacecraft Think for Themselves

Missions to asteroids have been on a tear recently. Visits by Rosetta, Osirix-REX, and Hayabusa2 have all visited small bodies and, in some cases, successfully returned samples to the Earth. But as humanity starts reaching out to asteroids, it will run into a significant technical problem – bandwidth. There are tens of thousands of asteroids in our vicinity, some of which could potentially be dangerous. If we launched a mission to collect necessary data about each of them, our interplanetary communication and control infrastructure would be quickly overwhelmed. So why not let our robotic ambassadors do it for themselves – that’s the idea behind a new paper from researchers at the Federal University of São Paulo and Brazil’s National Institute for Space Research.

The paper primarily focuses on the control problem of what to do when a spacecraft is approaching a new asteroid. Current missions take months to approach and require consistent feedback from ground teams to ensure the spacecraft understands the parameters of the asteroid it’s approaching – especially the gravitational constant.

Some missions have seen more success with that than others – for example, Philase, the lander that went along with Rosetta, had trouble when it bounced off the surface of comet 67P/Churyumov-Gerasimenko. As the authors pointed out, part of that difference was a massive discrepancy between the actual shape of the comet and the observed shape that telescopes had seen before Rosetta arrived there. 

Fraser discusses the possibility of capturing an asteroid.

Even more successful missions, such as OSIRIS-Rex, take months of lead-up time to complete relatively trivial maneuvers in the context of millions of kilometers their overall journey takes them. For example, it took 20 days for OSIRIX-Rex to perform multiple flybys at 7 km above the asteroid’s surface before its mission control deemed it safe to enter a stable orbit.

One of the significant constraints the mission controllers were looking at was whether they could accurately calculate the gravitational constant of the asteroid they were visiting. Gravity is notoriously difficult to determine from far away, and its miscalculation led to the problems with Philae. So, can a control scheme do to solve all of these problems?

Continue reading
  23 Hits

Testing a Probe that Could Drill into an Ice World

I remember reading about an audacious mission to endeavour to drill through the surface ice of Europa, drop in a submersible and explore the depths below. Now that concept may be taking a step closer to reality with researchers working on technology to do just that. Worlds like Europa are high on the list for exploration due to their potential to harbour life. If technology like the SLUSH probe (Search for Life Using Submersible Head) work then we are well on the way to realising that dream. 

The search for life has always been something to captivate the mind. Think about the diversity of life on Earth and it is easy to see why we typically envisage creatures that rely upon sunlight, food and drink. But on Earth, life has found a way in the most inhospitable of environments, even at the very bottom of the ocean. The Mariana’s Trench is deeper than Mount Everest is tall and anything that lives there has to cope with cold water, crushingly high pressure and no sunlight. Seems quite alien but even here, life thrives such as the deep-sea crustacean Hirondellea Gigas – catchy name. 

Location of the Mariana Trench. Credit: Wikipedia Commons/Kmusser

Europa, one of the moon’s of Jupiter has an ice crust but this covers over a global ocean of liquid water.  The conditions deep down in the ocean of Europa might not be so very different from those at the bottom of the Mariana’s Trench so it is here that a glimmer of hope exists to find other life in the Solar System. Should it exist, getting to it is the tricky bit. It’s not just on Europa but Enceladus and even Mars may have water underneath ice shelves. Layers of ice up to a kilometre thick might exist so technology like SLUSH has been developed to overcome. 

Natural color image of Europa obtained by NASA’s Juno spacecraft. (Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)

The technology is not too new though since melt probes like SLUSH have been tested before. The idea is beautifully simple.  The thermo-mechanical probe uses a drilling mechanism to break through the ice and then the heat probe to partially melt the ice chips, forming slush to enable their transportation to behind the probe as it descends. 

The probe, which looks rather like a light sabre, is then able to transmit data from the subsurface water back to the lander. A tether system is used for the data transmission using conductive microfilaments and an optical fibre cable. Intriguingly and perhaps even cunningly, should the fibre cable break (which is a possibility due to tidal stresses from the ice) then the microfilaments will work as an antenna.  They can then be tuned into by the lander to resume data transmission. The tether is coiled up and housed inside spools which are left behind in the ice as the spool is emptied. I must confess my immediate thought here was ‘litter’! I accept we have to leave probes in order to explore but surely we can do it without leaving litter behind! However there is a reason for this too. As the spools are deployed, they act as receivers and transmitters to allow the radio frequencies to travel through the ice. 


Continue reading
  21 Hits

What Could We Build With Lunar Regolith?

It has often been likened to talcum powder. The ultra fine lunar surface material known as the regolith is crushed volcanic rock. For visitors to the surface of the Moon it can be a health hazard, causing wear and tear on astronauts and their equipment, but it has potential. The fine material may be suitable for building roads, landing pads and shelters. Researchers are now working to analyse its suitability for a number of different applications.

Back in the summer of 1969, Armstrong and Aldrin became the first visitors from Earth to set foot on the Moon. Now, 55 years on and their footprints are still there. The lack of weathering effects and the fine powdery material have held the footprints in perfect shape since the day they were formed. Once we – and I believe this will happen – establish lunar bases and even holidays to the Moon those footprints are likely still going to be there. 

There are many challenges to setting up permanent basis on the Moon, least of which is getting all the material there. I’ve been embarking on a fairly substantial home renovation over recent years and even getting bags of cement and blocks to site has proved a challenge. Whilst I live in South Norfolk in UK (which isn’t the easiest place to get to I accept) the Moon is even harder to get to. Transporting all the necessary materials over a quarter of a million kilometres of empty space is not going to be easy. Teams of engineers and scientists are looking at what materials can be acquired on site instead of transporting from Earth. 

The fine regolith has been getting a lot of attention for this very purpose and to that end, mineralogist Steven Jacobsen from the Northwestern University has been funded by NASAs Marshall Space Flight Centre to see what it back be used for. In addition NASA has partnered with ICON Technology, a robotics firm to explore lunar building technologies using resources found on the Moon. A key challenge with the lunar regolith though is that samples can vary considerably depending on where they are collected from. Jacobsen is trying to understand this to maximise construction potential. 

ICON were awarded the $57.2 million grant back in November 2022 to develop lunar construction methods. Work had already begun on space based construction, again from ICON in their Project Olympus. This didn’t just focus on the Moon though, Mars was also part of the vision to create construction techniques that could work wherever they were employed. 

Continue reading
  18 Hits

The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), was formally proposed in 2001 to create an astronomical facility that could conduct deep-sky surveys using the latest technology. This includes a wide-field reflecting telescope with an 8.4-meter (~27.5-foot) primary mirror that relies on a novel three-mirror design (the Simonyi Survey Telescope) and a 3.2-megapixel Charge-Coupled Device (CCD) imaging camera (the LSST Camera). Once complete, Rubin will perform a 10-year survey of the southern sky known as the Legacy Survey of Space and Time (LSST).

While construction on the observatory itself did not begin until 2015, work began on the telescope’s digital cameras and primary mirror much sooner (in 2004 and 2007, respectively). After two decades of work, scientists and engineers at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory and their collaborators announced the completion of the LSST Camera – the largest digital camera ever constructed. Once mounted on the Simonyi Survey Telescope, this camera will help researchers observe our Universe in unprecedented detail.

The Vera C. Rubin Observatory is jointly funded by the U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) and is cooperatively operated by NSF NOIRLab and SLAC. When Rubin begins its ten-year survey (scheduled for August 2025), it will help address some of the most pressing and enduring questions in astronomy and cosmology. These include understanding the nature of Dark Matter and Dark Energy, creating an inventory of the Solar System, mapping the Milky Way, and exploring the transient optical sky (i.e., objects that vary in location and brightness).

A schematic of the LSST Camera. Note the size comparison; the camera will be the size of a small SUV. Credit: Vera Rubin Observatory/DOE

The LSST Camera will assist these efforts by gathering an estimated 5,000 terabytes of new raw images and data annually. “With the completion of the unique LSST Camera at SLAC and its imminent integration with the rest of Rubin Observatory systems in Chile, we will soon start producing the greatest movie of all time and the most informative map of the night sky ever assembled,” said Željko Ivezic, an astronomy professor at the University of Washington and the Director of Rubin Observatory Construction in a NoirLab press release.

Continue reading
  21 Hits

The First Atmospheric Rainbow on an Exoplanet?

When light strikes the atmosphere all sorts of interesting things can happen. Water vapor can split sunlight into a rainbow arc of colors, corpuscular rays can stream through gaps in clouds like the light from heaven, and halos and sundogs can appear due to sunlight reflecting off ice crystals. And then there is the glory effect, which can create a colorful almost saint-like halo around objects.

Like rainbows, glories are seen when facing away from the light source. They are often confused with circular rainbows because of their similarity, but glories are a unique effect. Rainbows are caused by the refraction of light through water droplets, while glories are caused by the wave interference of light. Because of this, a glory is most apparent when the water droplets of a cloud or fog are small and uniform in size. The appearance of a glory gives us information about the atmosphere. We have assumed that some distant exoplanets would experience glories similar to Earth, but now astronomers have found the first evidence of them.

A solar glory seen from an airplane. Credit: Brocken Inaglory

The observations come from the Characterising ExOplanet Satellite (Cheops) as well as observations from other observatories of an exoplanet known as WASP-76b. It’s not the kind of exoplanet where you’d expect a glory to appear. WASP-76b is not a temperate Earth-like world with a humid atmosphere, but a hellish hot Jupiter with a surface temperature of about 2,500 Kelvin. Because of this, the team wasn’t looking for extraterrestrial glories but rather studying the odd asymmetry of the planet’s atmosphere.

WASP-76b orbits its star at a tenth of the distance of Mercury from the Sun. At such a close distance the world is likely tidally locked, with one side forever boiling under its sun’s heat and the other side always in shadow. No such planet exists in our solar system, so astronomers are eager to study how this would affect the atmosphere of such a world. Previous studies have shown that the atmosphere is not symmetrical. The star-facing side is puffed up by the immense heat, while the atmosphere of the dark side is more dense.

For three years the team observed WASP-76b as it passed in front of and behind its star, capturing data on the intersection between the light and dark side. They found that on the planet’s eastern terminator (the boundary between light and dark sides) there was a surprising increase in light. This extra glow could be caused by a glory effect. It will take more observations to confirm this effect but if verified it will be the first glory observed beyond our solar system. Currently, glories have only been observed on Earth and Venus.

Continue reading
  15 Hits

Roman Will Learn the Ages of Hundreds of Thousands of Stars

Astronomers routinely provide the ages of the stars they study. But the methods of measuring ages aren’t 100% accurate. Measuring the ages of distant stars is a difficult task.

The Nancy Grace Roman Space Telescope should make some progress.

Stars like our Sun settle into their main sequence lives of fusion and change very little for billions of years. It’s like watching middle-aged adults go about their business during their working lives. They get up, drive to work, sit at a desk, then drive home.

But what can change over time is their rotation rate. The Sun now rotates about once a month. When it was first formed, it rotated more rapidly.

But over time, the Sun’s rotation rate, and the rotation rate of stars the same mass or lower than the Sun’s, will slow down. The slowdown is caused by interactions between the star’s magnetic fields and the stellar wind, the stream of high-energy protons and electrons emitted by stars. Over time, these interactions reduce a star’s angular momentum, and its rotation slows. The phenomenon is called “magnetic braking,” and it depends on the strength of a star’s magnetic fields.

This is a simulated image of what the Roman Space Telescope will see when it surveys the Milky Way's galactic bulge. The telescope will observe hundreds of millions of stars in the region. Image Credit: Matthew Penny (Louisiana State University)
Artist's impression of the Nancy Grace Roman Space Telescope, named after NASA's first Chief of Astronomy. When launched later this decade, the telescope will measure the rotational periods of hundreds of thousands of stars and, with the help of AI, will determine their ages. Credits: NASA
Continue reading
  16 Hits

Webb Sees a Galaxy Awash in Star Formation

Since it began operations in July 2022, the James Webb Space Telescope (JWST) has fulfilled many scientific objectives. In addition to probing the depths of the Universe in search of galaxies that formed shortly after the Big Bang, it has also provided the clearest and most detailed images of nearby galaxies. In the process, Webb has provided new insight into the processes through which galaxies form and evolve over billions of years. This includes galaxies like Messier 82 (M82), a “starburst galaxy” located about 12 million light-years away in the constellation Ursa Major.

Also known as the “Cigar Galaxy” because of its distinctive shape, M82 is a rather compact galaxy with a very high star formation rate. Roughly five times that of the Milky Way, this is why the core region of M82 is over 100 times as bright as the Milky Way’s. Combined with the gas and dust that naturally obscures visible light, this makes examining M82’s core region difficult. Using the extreme sensitivity of Webb‘s Near-Infrared Camera (NIRCam), a team led by the University of Maryland observed the central region of this starburst galaxy to examine the physical conditions that give rise to new stars.

The team was led by Alberto Bollato, an astronomy professor at the University of Maryland and a researcher with the Joint Space-Science Institute (JSSI). He was joined by researchers from NASA’s Jet Propulsion Laboratory, NASA Ames, the European Space Agency (ESA), the Space Telescope Science Institute (STScI), the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), the Max-Planck-Institut für Astronomie (MPIA), National Radio Astronomy Observatory (NRAO), the Infrared Processing and Analysis Center (IPAC-Caltech) and multiple universities, institutes, and observatories. Their findings are described in a paper accepted for publication in The Astrophysical Journal.

Annotated image of the starburst galaxy Messier 82 captured by Hubble (left) and Webb’s NIRCam (right). Credit: NASA/ESA/CSA/STScI/Alberto Bolatto (UMD)

Their observations were part of a Cycle 1 General Observations (GO) project – for which Bollato is the Principal Investigator (PI) – that used NIRCam data to examine the “prototypical starbursts” NGC 253 and M82 and their “cool” galactic winds. Such galaxies remain a source of fascination for astronomers because of what they can reveal about the birth of new stars in the early Universe. Starbursts are galaxies that experience rapid and efficient star formation, a phase that most galaxies went through during the early history of the Universe (ca. 10 billion years ago). Studying early galaxies in this phase is challenging due to the distances involved.


Continue reading
  12 Hits

The Stellar Demolition Derby in the Centre of the Galaxy

The region near the Milky Way’s centre is dominated by the supermassive black hole that resides there. Sagittarius A*’s overwhelming gravity creates a chaotic region where tightly packed, high-speed stars crash into one another like cars in a demolition derby.

These collisions and glancing blows change the stars forever. Some become strange, stripped-down, low-mass stars, while others gain new life.

The Milky Way’s supermassive black hole (SMBH) is called Sagittarius A* (Sgr. A*). Sgr. A* is about four million times more massive than the Sun. With that much mass, the much smaller stars nearby are easily affected by the black hole’s powerful gravity and are accelerated to rapid velocities.

In the inner 0.1 parsec, or about one-third of a light-year, stars travel thousands of kilometres per second. Outside that region, the pace is much more sedate. Stars beyond 0.1 parsec travel at hundreds of km/s.

But it’s not only the speed that drives the collisions. The region is also tightly packed with stars into what astronomers call a nuclear star cluster (NSC.) The combination of high speed and high stellar density creates a region where stars are bound to collide.

X7 is an elongated gas and dust structure in the galactic centre. The researchers suggest it could be made of mass stripped from stars during collisions between fast-moving stars near Sgr. A*. G3 and G2 are objects that resemble clouds of gas and dust but also have properties of stellar objects. Image Credit: Ciurlo et al. 2023.
This artist's illustration shows a massive star orbiting Sagittarius A*. Post-collision, some stars gain mass and end up shortening their lives. Image Credit: University of Cologne
Continue reading
  12 Hits

A New Map Shows the Universe’s Dark Energy May Be Evolving

At the Kitt Peak National Observatory in Arizona, an instrument with 5,000 tiny robotic eyes scans the night sky. Every 20 minutes, the instrument and the telescope it’s attached to observe a new set of 5,000 galaxies. The instrument is called DESI—Dark Energy Survey Instrument—and once it’s completed its five-year mission, it’ll create the largest 3D map of the Universe ever created.

But scientists are getting access to DESI’s first data release and it suggests that dark energy may be evolving.

DESI is the most powerful multi-object survey spectrograph in the world, according to their website. It’s gathering the spectra for tens of millions of galaxies and quasars. The goal is a 3D map of the Universe that extends out to 11 billion light-years. That map will help explain how dark energy has driven the Universe’s expansion.

DESI began in 2021 and is a five-year mission. The first year of data has been released, and scientists with the project say that DESI has successfully measured the expansion of the Universe over the last 11 billion years with extreme precision.

“The DESI team has set a new standard for studies of large-scale structure in the Universe.”

Continue reading
  12 Hits

A Supermassive Black Hole with a Case of the Hiccups

Can binary black holes, two black holes orbiting each other, influence their respective behaviors? This is what a recent study published in Science Advances hopes to address as a team of more than two dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated how a smaller black hole orbiting a supermassive black hole could alter the outbursts of the energy being emitted by the latter, essentially giving it “hiccups”. This study holds the potential to help astronomers better understand the behavior of binary black holes while producing new methods in finding more binary black holes throughout the cosmos.

“We thought we knew a lot about black holes, but this is telling us there are a lot more things they can do,” said Dr. Dheeraj “DJ” Pasham, who is a research scientist in MIT’s Kavli Institute for Astrophysics and Space Research and lead author of the study. “We think there will be many more systems like this, and we just need to take more data to find them.”

For the study, the researchers used a half dozen scientific instruments to obtain radio, ultraviolet, optical, and x-ray data on ASASSN-20qc, which is located approximately 260 megaparsecs (848,000,000 light-years) from Earth and was previously identified as a tidal disruption event (TDE) when first discovered in December 2020. The TDE responsible for astronomers first discovering ASASSN-20qc was caused by a star coming too close to the supermassive black hole and being slowly consumed over a four-month period. However, Dr. Pasham later looked over the data and found dips in energy output from the supermassive black hole occurring every 8.5 days throughout this four-month period.

Combining this data with computer models, the researchers confirmed the 8.5-day bursts of energy being emitted by supermassive black hole, which they hypothesize is caused by the smaller black orbiting around the larger one, with its own gravity influencing the gas and energy within the supermassive black hole’s disk. The researchers compare this phenomenon to an exoplanet transiting its parent star, resulting in a brief dip in starlight. These findings indicate that the disks of gas around black holes are far more chaotic than longstanding hypotheses have claimed.

“This is a different beast,” said Dr. Pasham. “It doesn’t fit anything that we know about these systems. We’re seeing evidence of objects going in and through the disk, at different angles, which challenges the traditional picture of a simple gaseous disk around black holes. We think there is a huge population of these systems out there.”

Continue reading
  78 Hits

Meteorites: Why study them? What can they teach us about finding life beyond Earth?

Universe Today has explored the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, and cosmochemistry, and how this myriad of intricately linked scientific disciplines can assist us in better understanding our place in the cosmos and searching for life beyond Earth. Here, we will discuss the incredible research field of meteorites and how they help researchers better understand the history of both our solar system and the cosmos, including the benefits and challenges, finding life beyond Earth, and potential routes for upcoming students who wish to pursue studying meteorites. So, why is it so important to study meteorites?

Dr. Alex Ruzicka, who is a Professor in the Department of Geology at Portland State University, tells Universe Today, “They provide our best information about how the solar system formed and evolved. This includes planet formation. We also obtain information on astrophysics (stellar processes) through studies of pre-solar grains.”

There is often confusion regarding the differences between an asteroid, meteor, and meteorite, so it’s important to explain their respective differences to help better understand why scientists study meteorites and how they study them. An asteroid is a physical, orbiting planetary body that is primarily comprised of rock, but can sometimes be comprised of additional water ice, with most asteroids orbiting in the Main Asteroid Belt between Mars and Jupiter and the remaining orbiting as Trojan Asteroids in the orbit of Jupiter or in the Kuiper Belt with Pluto. A meteor is the visual phenomena that an asteroid produces as it burns up in a planet’s atmosphere, often seen as varying colors from the minerals within the asteroid when heated up. The pieces of the asteroid that survive the fiery entry and hit the ground are called meteorites, which scientists’ study to try and learn about the larger asteroid body it came from, and where that asteroid could have come from, as well. But what are some of the benefits and challenges of studying meteorites?

Dr. Ruzicka tells Universe Today, “Benefits: scientific knowledge, information on potential resources (e.g., metals, water) for humans to utilize, information on how to link meteorites and asteroids, which can provide information on space collision hazards for Earth. Challenges: compared to Earth rocks, we lack field evidence for their source bodies and parent bodies (how they relate to other rocks), we have to factor in the element of time that is longer for space rocks than for Earth rocks, and sometimes we are dealing with formation environments completely unlikely what we have on Earth. So, the challenges are big and many.”

According to NASA, more than 50,000 meteorites have been retrieved from all over the world, ranging from the deserts of Africa to the snowy plains of Antarctica. In terms of their origins, it is estimated that 99.8 percent of these meteorites have come from asteroids, with 0.1 percent coming from the Moon and 0.1 percent coming from Mars. The reason why we’ve found meteorites from the Moon and Mars is due to pieces of these planetary bodies being catapulted off their surfaces (or sub-surfaces) after experiencing large impacts of their own, and these pieces then travel through the Solar System for thousands, if not millions, of years before being caught in Earth’s gravity and the rest is history. Therefore, with meteorites originating from multiple locations throughout the Solar System, what can meteorites teach us about finding life beyond Earth?



Continue reading
  85 Hits

China's Relay Satellite is in Lunar Orbit

On March 20th, China’s Queqiao-2 (“Magpie Bridge-2”) satellite launched from the Wenchang Space Launch Site LC-2 on the island of Hainan (in southern China) atop a Long March-8 Y3 carrier rocket. This mission is the second in a series of communications relay and radio astronomy satellites designed to support the fourth phase of the Chinese Lunar Exploration Program (Chang’e). On March 24th, after 119 hours in transit, the satellite reached the Moon and began a perilune braking maneuver at a distance of 440 km (~270 mi) from the lunar surface.

The maneuver lasted 19 minutes, after which the satellite entered lunar orbit, where it will soon relay communications from missions on the far side of the Moon around the South Pole region. This includes the Chang’e-4 lander and rover and will extend to the Chang’e-6 sample-return mission, which is scheduled to launch in May. It will also assist Chang’e-7 and -8 (scheduled for 2026 and 2028, respectively), consisting of an orbiter, rover, and lander mission, and a platform that will test technologies necessary for the construction of the International Lunar Research Station (ILRS).

A perilune braking maneuver is vital to establishing a lunar orbit and consists of a thruster firing as the spacecraft approaches the Moon. This reduces the spacecraft’s relative velocity to less than the lunar escape velocity (2.38 km/s; 1.74 mps) so that it can be captured by the Moon’s gravity. Two experimental satellites that will test navigation and communication technology (Tiandu-1 and -2), which accompanied the Queqiao-2 satellite to the Moon, also performed a perilune braking maneuver and entered lunar orbit on Monday.

These two satellites will remain in formation in an elliptical lunar orbit and will conduct communication and navigation tests, including laser ranging with the Moon and microwave ranging between satellites. According to the CNSA, Queqiao-2 will enter a 24-hour elliptical orbit around the Moon at a distance of 200 km (125 mi) at its closest point (perigee) and 100,000 km (62,000 mi) at its farthest point (apogee). Mission controllers will further alter Queqiao-2’s orbit and inclination to bring it into a “200 by 16,000-km, highly-elliptical ‘frozen’ orbit.”

Within this highly stable orbit, Queqiao-2 will have a direct line of sight with ground stations on Earth and the far side of the Moon and will conduct communication tests with Chang’e-4 and Chang’e-6 using its 4.2-m (13.8-ft) parabolic antenna. The mission could also support other countries in their lunar exploration efforts, many of whom are also interested in scouting the Moon’s far side and southern polar region. The satellite also carries scientific instruments, including extreme ultraviolet cameras, array-neutral atom imagers, and lunar orbit Very Long Baseline Interferometry (VLBI) test subsystems.

Continue reading
  59 Hits

The Hubble Aims Its Powerful Ultraviolet Eye at Super-Hot Stars

Some stars are so massive and so energetic that they’re a million times brighter than the Sun. This type of star dominated the early Universe, playing a key role in its development and evolution. The first of its kind are all gone now, but the modern Universe still forms stars of this type.

These hot, blue stars emit powerful ultraviolet energy that the Hubble can detect from its perch in Low-Earth Orbit.

In December 2023, astronomers completed a three-year survey of these hot stars. It’s one of the Hubble’s largest and most ambitious surveys. It’s called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards), and in it, astronomers gathered detailed information on almost 500 stars.

UV emissions from hot young stars provide a window into some of the processes inside these stars. UV can’t be observed from Earth because the ozone layer blocks it. That’s one of the reasons the Hubble was built. From its perch, it can gather high-resolution UV images. That’s the impetus for ULLYSES.

The survey doesn’t contain images of all the stars. Instead, the Hubble gathered spectra from 220 stars and combined them with Hubble archival data on 275 additional stars. Powerful ground-based telescopes also made a contribution, though not in UV. The result is a very rich dataset consisting of detailed spectra from both hot, bright, massive stars and from cool, dim, low-mass stars.

Massive blue stars have powerful winds that shape their surroundings. The Hubble spectra can tell which way the winds travel and how fast they travel. The star represented by the teal line has slower winds than the star shown by the purple line. Image Credit: Hubble/ STScI/ULYSSES
These spectra show the iron content for two stars. In this image, the star represented by the purple line has less iron, indicating that it's older than the other star. Iron content affects a star's lifetime and the strength of its winds. Image Credit: Hubble/ STScI/ULYSSES
As part of the three-year ULYSSES survey, the Hubble also observed cool, dim, low-mass stars like the one in this artist's illustration, which are still growing by accreting material from their disks. Image Credit: Robert O'Connell (UVA), SOC-WFC3, ESO
Continue reading
  86 Hits

Search for Life on Mars Could Level-Up with MARSE Mission Concept

A recent study presented at the 55th Lunar and Planetary Science Conference (LPSC) discusses the Mars Astrobiology, Resource, and Science Explorers (MARSE) mission concept and its Simplified High Impact Energy Landing Device (SHIELD), which offers a broader and cheaper method regarding the search for—past or present—life on the Red Planet, specifically by using four rovers at four different landing sites across Mars’ surface instead of just one-for-one. This concept comes as NASA’s Curiosity and Perseverance rovers continue to tirelessly explore the surface of Mars at Gale Crater and Jezero Crater, respectively.

Here, Universe Today discusses the MARSE mission concept with the study’s sole author, Alex Longo, who is a MS student in the Department of Earth, Marine and Environmental Sciences at the University of North Carolina at Chapel Hill, regarding the motivation behind MARSE, how the landing sites were chosen, significant implications, current work being conducted, and next steps for MARSE becoming an actual mission. Longo draws on his ten-plus years of experience finding landing sites on Mars, along with having several publications under his belt, including an assortment of scientific abstracts, papers, and a Kindle book. So, what was the motivation behind the MARSE mission concept?

“The overarching goal of the MARSE concept study was to reduce the cost of access to the surface of Mars,” Longo tells Universe Today. “Flagship-class rovers, such as Curiosity and Perseverance, are extremely capable vehicles. The caveat is that, since they cost over a billion dollars apiece, we can only visit one or two sites on Mars every decade. Like Earth, Mars is an astoundingly diverse planet. Using satellites in orbit, we have mapped a variety of ancient environments which may have been habitable in the distant past. However, the resolution of orbital imagery and spectra are limited, and they sometimes fail to predict what a field geologist (or, in the case of Mars, a rover controlled by geologists) will discover on the ground. Even on Earth, finding early biosignatures is difficult, and even with comparatively little weathering and erosion, I would not be surprised if the same is true on Mars. MARSE was intended to present one possible solution which would allow planetary scientists to explore more sites on Mars within a realistic budget.”

The car-sized Curiosity rover landed in Gale Crater on August 6, 2012, with its mission website displaying that Curiosity has traveled a total of 31.27 kilometers (19.43 miles) as of January 27, 2024, having far surpassed its primary mission timeline of one Martian year, or 687 Earth days. Gale Crater was chosen as the landing site due to a multitude of evidence that it once held liquid water at some point in Mars’ ancient past, as scientists estimate that Gale Crater was formed from an impact between approximately 3.5 to 3.8 billion years ago. During its time in Gale Crater, Curiosity has used its suite of scientific instruments to identify evidence of past liquid water within Gale Crater and evidence that Mars once contained the building blocks for life, including carbon, oxygen, nitrogen, phosphorus, and sulfur.

A selfie of NASA’s Curiosity rover taken on Oct. 11, 2019, or the 2,553rd Martian day, or sol, of its long and successful mission. (Credit: NASA/JPL-Caltech/Malin Space Science Systems)





Continue reading
  86 Hits

The Milky Way’s Smallest, Faintest Satellite Galaxy Found

The Milky Way has many satellite galaxies, most notably the Large and Small Magellanic Clouds. They’re both visible to the naked eye from the southern hemisphere. Now astronomers have discovered another satellite that’s the smallest and dimmest one ever detected. It may also be one of the most dark matter-dominated galaxies ever found.

The galaxy is called Ursa Major III / UNIONS 1 (UMa3/U1), and it contains very few stars. In fact, its luminosity is so low that it’s gone undetected until new, even though it’s in our neighbourhood.

The discovery is in a new paper titled “Ursa Major III/UNIONS 1: the darkest galaxy ever discovered?” The paper has been published in The Astrophysical Journal, and the lead author is Simon Smith. Smith is an astronomy graduate student at the University of Victoria, BC, Canada.

“UMa3/U1 is located in the Ursa Major (Great Bear) constellation, home of the Big Dipper. It is in our cosmic backyard, relatively speaking, at about 30,000 light-years from the Sun,” said Smith. “UMa3/U1 had escaped detection until now due to its extremely low luminosity.”

There are only about 60 stars in UMa3/U1, which barely qualifies it as a galaxy. There are star clusters with more members than that. In fact, the tiny galaxy is more in line with an open cluster in terms of number of stars.

This figure from the research shows the motion (L) and velocity (R) of the dwarf galaxy's member stars. In the left panel, the great region marks the motion of stars in the Milky Way and shows how the member stars (blue) are clustered together differently. In the panel on the right, the member stars are clustered together by velocity, and the empty circles are other non-member stars. Image Credit: Smith et al. 2024
The ESA's Gaia mission has found many dwarf galaxies and globular clusters in the Milky Way's halo. This image from the mission's second data release shows 75 globular clusters (blue) and 12 nearby dwarf galaxies (red). But deeper observations are needed to understand the nature of the dwarf galaxies. Image Credit: ESA/Gaia/DPAC; Map and orbits: CC BY-SA 3.0 IGO LICENCE CC BY-SA 3.0 IGO or ESA Standard Licence
Continue reading
  73 Hits

Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One

We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of them. They are so popular partly because of their extremely high specific impulse and thrust levels, and they seemingly solve the trade-off between those two all-important variables in space exploration propulsion systems. Essentially, they are an extremely efficient propulsion methodology that, if scaled up, would allow payloads to reach other planets in weeks rather than months or years. However, some inherent dangers still need to be worked out, and overcoming some of those dangers was the purpose of a NASA Institute for Advanced Concepts (NIAC) project back in 2020. 

Originally granted to Howe Industries, a design shop that has received several NIAC grants (including two in 2020 itself), the purpose of this project was to model the design of a fully functional PPR in modeling software to see if the necessary materials and power systems are available for a rocket that can provide 100 kN of thrust and over 5,000 seconds of specific impulse. 

In essence, a PPR takes a fuel pellet made out of some form of fissionable material (in this case, uranium), and zaps it into a plasma, then emits the plasma out the back for a forceful thrust. Rockets with this design can carry much less fuel than standard chemical rockets, but their design must be significantly larger due to the heating constraints put on the system by creating the plasma in the first place.

SciShow discusses a scaled down version of the PPR proposed in the paper.
Credit – SciShow Space

Those heating constraints were one of the Phase I NIAC study’s main focal points in 2020. In particular, this study focused on analyzing the barrel the fuel pellet is released into to see if it could withstand the extreme temperatures created by handling a plasmatized uranium pellet.

To do this modeling, the team at Howe Industries used a modeling software called MCNP6 to check where particles went in the system and thereby calculate how much heat would be collected on other parts of the system where it wasn’t desired. MCNP6 uses a Monte Carlo simulation methodology, which calculates where neutrons will be created from the fission reaction that makes the plasma and where those neutrons will impact the rest of the spacecraft.

Continue reading
  52 Hits

Civilizations Could Time Their Communications Based on the Movement of a Single Star

The Search for Extraterrestrial Intelligence has been ongoing for decades at this point. Despite that, we have yet to find any rock-hard evidence of a signal from an alien civilization. When asked about this, experts point out just how little of the overall signal space we’ve analyzed. A signal could be coming from anywhere in the sky, at any frequency, and might not be continuous. Constraining the “search space” could help us find a signal faster, but what could we use to constrain it? It’s hard to think like an alien intelligence, let alone to mimic them.

One of the most famous examples of the reverse of search is the Arecibo message, wherein humanity tried to announce, “We are here,” using scientific and mathematical standards like numbers and the atomic number of some elements (hydrogen and carbon, for example). Even so, it was still sent as a binary signal using a type of frequency modulation at a single point in time back in 1975. The likelihood that any civilization in the Messier 13 globular cluster, its intended target, will be able to both receive and interpret it is negligible. But it would help if they had a key to interpret it. But how can we convey a key to unlock the message without the key itself being interpretable only with the same key?

Naoki Seto of Kyoto University’s Department of Physics has spent a lot of time thinking about that question, and he came to a similar conclusion about the usefulness of scientific constants. In the past, he produced papers that suggested the time of a future binary star merger or a past supernova explosion to help narrow down a patch of sky to look at. However, with a new paper released on March 21st, he suggested a new idea – the orbital period of an exceptionally bright star around the Milky Way’s supermassive black hole.

Fraser discusses the most hyped finding of SETI so far – the WOW! signal.

The supermassive black hole at the center of our galaxy, known as Sgr A*, would be well known to any alien civilization advanced enough to send communication signals to announce their presence. It also, conveniently, has several super-bright stars that orbit it on regular periods. Dr. Seto selected one of those stars, known simply as S2.

S2 is a B-type star, is skewed toward the blue end of the stellar spectrum, and weighs in at about 15 times the mass of our own Sun. But most importantly, it is very, very bright and orbits Sgr A* with an orbital period of almost exactly 16 years. 

Continue reading
  46 Hits

The ESA’s Mars Rover Gets a New Map

Rosalind Franklin, the ESA’s Mars rover, is scheduled to launch no sooner than 2028. Its destination is Oxia Planum, a wide clay-bearing plain to the east of Chryse Planitia. Oxia Planum contains terrains that date back to Mars’ Noachian Period, when there may have been abundant surface water, a key factor in the rover’s mission.

Rosalind Franklin’s primary mission mirrors that of NASA’s Perseverance rover: to search for fossil evidence of life. To do that, both rovers are equipped with a suite of powerful instruments. They both have sampling drills, but Franklin’s drill wins the tale of the tape. It can penetrate to a depth of two meters, compared to Perseverance’s which can only drill a few inches deep.

In order for the Franklin to be successful, it needs to land in a place where its drilling capability can be put to good use. That’s why the ESA chose Oxia Planum. Not only is it flat, which makes for a safer landing, but it contains hydrated minerals. In fact, it’s one of the largest exposed sections of clay-bearing minerals on Mars, and that’s where the fossilized evidence of life it seeks may be found.

A team of European scientists has created the most detailed geological map of Oxia Planum ever. It took four years to complete and leans heavily on data from orbiters. The detailed map shows 15 units with characteristic geological features that can help decide how the rover explores the area. The map will also help the rover interpret its surroundings and collect evidence of primitive life.

“This map is exciting because it is a guide that shows us where to find the answers.”

This isn't the first geological map of the Martian surface. But as this comparison shows, the new map (left) is much more detailed than previous ones (right.) The map on the right is a global geological map that labels the entire landing region as lNh, or late Noachian highlands. Image Credit: L: Fawdon et al. 2024. R: Tanaka et al. 2014.
This is the new geological map of Oxia Planum, along with explanatory text. Image Credit: Fawdon et al. 2024.


Oxia planum is rich in clays, also called hydrated minerals. Because clays are formed in water-rich environments, it makes these sites excellent locations to study for clues as to whether life once began on Mars. Image Credit: ESA/Mars Express (OMEGA and HRSC) and NASA/Mars Reconnaissance Orbiter (CRISM). LICENCE: ESA Standard Licence
Continue reading
  45 Hits

Astronomers Catch a Supernova Explode Almost in Realtime

Catching a supernova in action is tricky business. There is no way to predict them, and they don’t occur very often. Within the Milky Way they only occur about once a century, and the last one was observed in 1604.

Of course, supernovae occur in other galaxies too, but you still have to get lucky to catch them as they explode.

But that’s what happened last year, according to a new paper released in Nature this week. Japanese amateur astronomer Koichi Itagaki, observing a nearby galaxy named Messier 101 (colloquially known as the Pinwheel Galaxy), recognized that something special was happening. He had just observed a new supernova. It was dubbed SN 2023ixf.

The initial phase of a supernova is measured in hours, so astronomers had to act fast. Within five hours, Itagaki had reported the sighting to an international astronomical reporting database called the Transient Name Server. Less than an hour after that, professional astronomers were already rushing to turn their telescopes to look at the new explosion.

The discovery took place on May 19, a Friday night, and it was a scramble to get everything in place across multiple time zones.


Continue reading
  42 Hits

Neutron Stars are Jetting Material Away at 40% the Speed of Light

It’s a well known fact that black holes absorb anything that falls into them. Often before material ‘vanishes’ inside it forms into an accretion disk around them. Like the progenitor stars, the black holes have powerful magnetic fields and these can generate jets that blast away from the black hole. A similar process occurs in neutron stars that are orbiting other stars and recent observations holes have shown that some material in the jets travel at speeds 35-40% the speed of light. 

The European Space Agency launched the International Gamma Ray Astrophysics Laboratory (Integral) in October 2002. Its purpose to observe gamma ray events across the universe with energies up to 8 MeV (meagaelectron volts). Not only can it image gamma ray events, it can also provide spectroscopic analysis. Of all the gamma ray instruments in space, Integral is the most sensitive. It was using Integral that astronomers detected the high velocity jets. 

Artist’s illustration of Integral. Image credit: ESA

One of the chief methods used to identify the velocity of jets is to track matter moving along their length. This might sound easy but the distances to them are so extreme that observing their movement is difficult. A team of astronomers led by Thomas Russell from the National Institute for Astrophysics in Italy conjured up a cunning idea that neutron stars might help! 

Neutron stars are the result of the collapse of a massive star – effectively they are a whacking great neutron often around the size of Earth – and when a neutron star orbits another star, it can strip material off the companion. Most of the material accretes on the neutron star surface and wen it reaches a critical mass, a nuclear explosion occurs in an event known as a type-I x-ray burst. Some material however escapes this event by being ejected out of jets along the star’s rotational axis. 

Russell and his team concluded that the matter would be accelerated by the energy from the neutron star surface and it may be possible to measure the disturbance. The short lived impulse of extra material shot along the beam may make it easier to track. To date, there are 125 neutron stars that behave like this. If sufficient neutron stars with jets can be observed hen it may help us to understand the primary launching mechanism and whether magnetic fields from the star or material are key.

Continue reading
  59 Hits

SpaceZE.com