Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

The Brightest Object Ever Seen in the Universe

It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2023, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.

The international team responsible for the discovery consisted of astrophysicists from the Research School of Astronomy and Astrophysics (RSAA) and the Center for Gravitational Astrophysics (CGA) at the Australian National University (ANU). They were joined by researchers from the University of Melbourne, the Paris Institute of Astrophysics (IAP), and the European Southern Observatory (ESO). The paper that describes their findings, titled “The accretion of a solar mass per day by a 17-billion solar mass black hole,” recently appeared online and will published in the journal Nature Astronomy.

First observed in 1963 by Dutch-American astronomer Maarten Schmidt, quasars (short for “quasi-stellar objects”) are the bright cores of galaxies powered by SMBHs. These black holes collect matter from their surroundings and accelerate it to near the speed of light, which releases tremendous amounts of energy across the electromagnetic spectrum. Quasars become so bright that their cores will outshine all the stars in their disk, making them the brightest objects in the sky and visible from billions of light-years away.

As a general rule, astronomers gauge the growth rate of SMBHs based on the luminosity of their galaxy’s core region – the brighter the quasar, the faster the black hole is accreting matter. In this case, the SMBH at the core of J0529-4351 is growing by the equivalent of one Solar mass a day, making it the fastest-growing black hole yet observed. In the process, the accretion disk alone releases a radiative energy of 2 × 1041 Watts, more than 500 trillion times the luminous energy emitted by the Sun. Christian Wolf, an ANU astronomer and lead author of the study, characterized the discovery in a recent ESO press release:

“We have discovered the fastest-growing black hole known to date. It has a mass of 17 billion Suns, and eats just over a Sun per day. This makes it the most luminous object in the known Universe. Personally, I simply like the chase. For a few minutes a day, I get to feel like a child again, playing treasure hunt, and now I bring everything to the table that I have learned since.”

Continue reading
  40 Hits

Japan's New H3 Rocket Successfully Blasts Off

Japan successfully tested its new flagship H3 rocket after an earlier version failed last year. The rocket lifted off from the Tanegashima Space Center on Saturday, February 17, reaching an orbital altitude of about 670 kilometers (420 miles). It deployed a set of micro-satellites and a dummy satellite designed to simulate a realistic payload.

With the successful launch of the H3, Japan will begin transitioning away from the previous H-2A rocket which has been in service since 2001 and is set to be retired after two more launches. Several upcoming missions depend on the H3, so this successful test was vital.

The launch came after two days of delays because of bad weather. The H3 rocket, built by Mitsubishi Heavy Industries, is now set to become the main launch vehicle of Japan’s space program. The rocket’s first flight in March 2023 failed to reach orbit, which resulted in the loss of an Earth imaging satellite.

The successful launch and deployment of the satellites was a relief for JAXA and members of the project. A livestream of the launch and subsequent successful orbit insertion showed those in the JAXA command cheering and hugging each other.

“I now feel a heavy load taken off my shoulders,” said JAXA H3 project manager Masashi Okada, speaking at a press briefing after the launch. “But now is the real start for H3, and we will work to steadily improve it.”

Continue reading
  50 Hits

Gravastars are an Alternative Theory to Black Holes. Here's What They'd Look Like

One of the central predictions of general relativity is that in the end, gravity wins. Stars will fuse hydrogen into new elements to fight gravity and can oppose it for a time. Electrons and neutrons exert pressure to counter gravity, but their stability against that constant pull limits the amount of mass a white dwarf or neutron star can have. All of this can be countered by gathering more mass together. Beyond about 3 solar masses, give or take, gravity will overpower all other forces and collapse the mass into a black hole.

While black holes have a great deal of theoretical and observational evidence to prove their existence, the theory of black holes is not without issue. For one, general relativity predicts that the mass compresses to an infinitely dense singularity where the laws of physics break down. This singularity is shrouded by an event horizon, which serves as a point of no return for anything devoured by the black hole. Both of these are problematic, so there has been a long history of trying to find some alternative. Some mechanism that prevents singularities and event horizons from forming.

One alternative is a gravitational vacuum star or gravitational condensate star, commonly called a gravastar. It was first proposed in 2001, and takes advantage of the fact that most of the energy in the universe is not regular matter or even dark matter, but dark energy. Dark energy drives cosmic expansion, so perhaps it could oppose gravitational collapse in high densities.

Illustration of a hypothetical gravastar. Credit: Daniel Jampolski and Luciano Rezzolla, Goethe University Frankfurt

The original gravastar model proposed a kind of Bose-Einstein condensate of dark energy surrounded by a thin shell of regular matter. The internal condensate ensures that the gravastar has no singularity, while the dense shell of matter ensures that the gravastar appears similar to a black hole from the outside. Interesting idea, but there are two central problems. One is that the shell is unstable, particularly if the gravastar is rotating. There are ways to tweak things just so to make it stable, but such ideal conditions aren’t likely to occur in nature. The second problem is that gravitational wave observations of large body mergers confirm the standard black hole model. But a new gravastar model might solve some of those problems.

Continue reading
  50 Hits

European Satellite ERS-2 to Reenter Earth’s Atmosphere This Week

One of the largest reentries in recent years, ESA’s ERS-2 satellite is coming down this week.

After almost three decades in orbit, an early Earth-observation satellite is finally coming down this week. The European Space Agency’s (ESA) European Remote Sensing satellite ERS-2 is set to reenter the Earth’s atmosphere on or around Wednesday, February 21st.

Launched atop an Ariane-4 rocket from the Kourou Space Center in French Guiana on April 21st, 1995, ERS-2 was one of ESA’s first Earth observation satellites. ERS-2 monitored land masses, oceans, rivers, vegetation and the polar regions of the Earth using visible light and ultraviolet sensors. The mission was on hand for several natural disasters, including the flood of the Elbe River across Germany in 2006. ERS-2 ceased operations in September 2011.

Anatomy of the reentry of ERS-2. ESA

ERS-2 was placed in a retrograde, Sun-synchronous low Earth orbit, inclined 98.5 degrees relative to the equator. This orbit is typical for Earth-observing and clandestine spy satellites, as it allows the mission to image key target sites at the same relative Sun angle, an attribute handy for image interpretation.

ERS-2 tracks and ice floe. ESA

Reentry predictions for the satellite are centered on February 21st at 00:19 Universal Time (UT)+/- 25 hours. As we get closer, expect that time to get refined. The mass of ERS-2 at launch (including fuel) was 2,516 kilograms. Expect most of the satellite to burn up on reentry.

Ice
Orbit
ERS2
ERS-2
Continue reading
  82 Hits

Look at How Much the Sun Has Changed in Just Two Years

The solar cycle has been reasonably well understood since 1843 when Samuel Schwabe spent 17 years observing the variation of sunspots. Since then, we have regularly observed the ebb and flow of the sunspots cycle every 11 years. More recently ESA’s Solar Orbiter has taken regular images of the Sun to track the progress as we head towards the peak of the current solar cycle. Two recently released images from February 2021 and October 2023 show how things are really picking up as we head toward solar maximum.

The Sun is a great big ball of plasma, electrically charged gas, which has the amazing property that it can move a magnetic field that may be embedded within.  As the Sun rotates, the magnetic field gets dragged around with it but, because the Sun rotates faster at the equator than at the poles, the field lines get wound up tighter and tighter.

Under this immense stressing, the field lines occasionally break, snap or burst through the surface of the Sun and when they do, we see a sunspot. These dark patches on the visible surface of the Sun are regions where denser concentrations of solar material prohibit heat flow to the visible surface giving rise to slightly cooler, and therefore darker patches on the Sun. 

A collage of new solar images captured by the Inouye Solar Telescope, which is a small amount of solar data obtained during the Inouye’s first year of operations throughout its commissioning phase. Images include sunspots and quiet regions of the Sun, known as convection cells. (Credit: NSF/AURA/NSO)

The slow rotation of the Sun and the slow but continuous winding up of the field lines means that sun spots become more and more numerous as the field gets more distorted. Observed over a period of years the spots seem to slowly migrate from the polar regions to the equatorial regions as the solar cycle progresses. 

To try and help understand this complex cycle and unlock other mysteries of the Sun, the European Space Agency launched its Solar Orbiter on 10 February 2020. Its mission to explore the Sun’s polar regions, understand what drives the 11 year solar cycle and what drives the heating of the corona, the outer layers of the Sun’s atmosphere. 

Solar Orbiter
Continue reading
  39 Hits

What are the Differences Between Quasars and Microquasars?

Quasars are fascinating objects; supermassive black holes that are actively feasting on material from their accretion disks. The result is a jet that can outshine the combined light from the entire galaxy! There are smaller blackholes too that are the result of the death of stars and these also sometimes seem to host accretion disks and jets just like their larger cousins. We call these microquasars and, whilst there are similarities between them, there are differences too.

The term quasar gives a clue to their nature, the term is an abbreviated version of ‘qausi-stellar radio source’ which is exactly what they are.  A source of radio energy which seems to present as the pinpoint nature of stars.  The first quasar to be discovered was given the rather unimaginative name ‘3C 273’ and it was found in the constellation Virgo.  Most objects of this nature tend to have catalogue numbers rather than more common names and in the case of 3C 273 it tells us it is the 273rd object in the 3rd Cambridge Catalogue of Radio Sources.

It was in 1964 that we started to understand the nature of quasars and their incredible luminosity which is the result of the accretion of material onto a supermassive black hole. The accretion process seems to drive twin radio lobes that appear as opposing jets out of their rotational axis. The microquasars seem to be scaled-down versions. 

In a paper recently published by J I Katz from the Washington University the differences between the two are explored and, despite the common nature of quasars across the Universe, to date only 19 microquasars have been discovered and there is one key difference emerging.

It seems that the radio lobes are the key.  In quasars, a significant propotion of the power appears to come from particle acceleration along their polar jets, driving the energy release from the radio lobes. In microquasars, this seems to be the opposite with thermal emissions from their accretion disk more prominent. In quasars, for some as yet unknown reason, the accretion of material onto the supermassive black holes seems to drive the particle acceleration along the jet rather than thermal radiation yet this is not the case for the smaller microquasars. 

Continue reading
  44 Hits

Odysseus Moon Lander Sends Back Selfies With Earth in the Picture

Intuitive Machines’ Odysseus lander has beamed back a series of snapshots that were captured as it headed out from the Earth toward the moon, and one of the pictures features Australia front and center. The shots also show the second stage of the SpaceX Falcon 9 rocket that launched the spacecraft, floating away as Odysseus pushed onward.

The pictures were taken on Feb. 16, the day of the launch.

“Payload integration managers programmed the lander’s wide and narrow field-of-view cameras to take five quick images every five minutes for two hours, starting 100 seconds after separating from SpaceX’s second stage,” Houston-based Intuitive Machines explained in a posting to X / Twitter. “Out of all the images collected, Intuitive Machines chose to show humanity’s place in the universe with four wonderful images we hope to inspire the next generation of risk-takers.”

If Intuitive Machines’ IM-1 mission is successful, Odysseus is due to become the first commercial spacecraft to make a soft landing on the moon, and the first U.S. spacecraft to do so since NASA’s Apollo 17 crewed mission in 1972.

The lander, which is about the size of an old-fashioned telephone booth, is carrying six science payloads for NASA, plus six commercial payloads — including a miniaturized camera system that would be dropped off just before landing to record the touchdown.

Continue reading
  41 Hits

Solar Eclipses Provide a Rare Way to Study Cloud Formation

April 8’s North American solar eclipse is just around the corner, and it has astronomy fans and weather aficionados alike preparing for an incredible show. But it’s not just fun and games. Eclipses are rare opportunities for scientists to study phenomena that only come around once in a while.

Last week, a team of meteorological experts from the Netherlands released a paper describing how eclipses can disrupt the formation of certain types of clouds. Their findings have implications for futuristic geoengineering schemes that propose to artificially block sunlight to combat climate change.

Published in Nature Communications Earth & Environment, the paper examines satellite imagery of cloud cover during three solar eclipses between 2005 and 2016.

They found that in the wake of an eclipse, shallow cumulus clouds tend to disappear – and it doesn’t even need to be a total eclipse for this to occur – it happens when just 15% of the Sun is obscured.

The effect isn’t immediate. There’s a delay of about 20 minutes. That’s because the eclipse isn’t destroying the clouds directly. Instead, it’s cooling the land beneath, interrupting packets of warm air that race upwards in updrafts to condense into clouds. By suppressing the updrafts, the eclipse puts a pause on cumulus cloud formation.

Continue reading
  43 Hits

Even Eris and Makemake Could Have Geothermal Activity

Whether or not you agree that Pluto isn’t a planet, in many ways, Pluto is quite different from the classical planets. It’s smaller than the Moon, has an elliptical orbit that brings it closer to the Sun than Neptune at times, and is part of a collection of icy bodies on the edge of our solar system. It was also thought to be a cold dead world until the flyby of New Horizons proved otherwise. The plucky little spacecraft showed us that Pluto was geologically active, with a thin atmosphere and mountains that rise above icy plains. Geologically, Pluto is more similar to Earth than the Moon, a fact that has led some to reconsider Pluto’s designation as a dwarf planet.

Astronomers still aren’t sure how Pluto has remained geologically active. Perhaps the gravitational interactions with its moon Charon, or perhaps interior radioactive decay. But regardless of the cause, the general thought has been that Pluto is an exception, not a rule. Other outer worlds of similar size and composition are likely dead worlds. But a new study shows that isn’t the case for at least two dwarf planets, Eris and Makemake.

This new study doesn’t rely on high-resolution images like we have for Pluto. Our current observations of Eris and Makemake show them only as small, blurry dots. But we do have spectral observations of these worlds, which is where this study comes in.

The team looked at the spectral lines of molecules on the surface of these worlds, most specifically that of methane. Methane, or CH4 has two important variants. One is composed of standard hydrogen atoms, while the other contains one or more atoms of a type of hydrogen known as deuterium. Deuterium has a nucleus containing a proton and neutron rather than just a proton, and this skews the spectrum of methane a bit. From the spectral observations, the team could measure the D/H ratio for methane on both worlds.

How D/H ratios compare to possible origins. Credit: Glein, et al

This ratio is determined by the source of the methane. If Eris and Makemake are dead worlds, then the methane they have stems from their origin more than 4 billion years ago, and the D/H level should be on the higher end. On the other hand, if the surface methane was generated through an interior process and vented through active geological processes, then the D/H ratio should be lower. The team found that the ratio is most consistent with thermogenic and abiotic mechanisms, suggesting that both Eris and Makemake are active worlds, or at least were active in geologically recent times.

Continue reading
  26 Hits

There’s One Last Place Planet 9 Could Be Hiding

 A recently submitted study to The Astronomical Journal continues to search for the elusive Planet Nine (also called Planet X), which is a hypothetical planet that potentially orbits in the outer reaches of the solar system and well beyond the orbit of the dwarf planet, Pluto. The goal of this study was to narrow down the possible locations of Planet Nine and holds the potential to help researchers better understand the makeup of our solar system, along with its formation and evolutionary processes. So, what was the motivation behind this study regarding narrowing down the location of a potential Planet Nine?

Dr. Mike Brown, who is a Richard and Barbara Rosenberg Professor of Astronomy at Caltech and lead author of the study, tells Universe Today, “We are continuing to try to systematically cover all of the regions of the sky where we predict Planet Nine to be. Using data from Pan-STARRS allowed us to cover the largest region to date.”

Pan-STARRS, which stands for Panoramic Survey Telescope and Rapid Response System, is a collaborative astronomical observation system located at Haleakala Observatory and operated by the University of Hawai’I Institute of Astronomy with telescope construction being funded by the U.S. Air Force. For the study, the researchers used data from Data Release 2 (DR2) with the goal of narrowing down the possible location of Planet Nine based on findings from past studies.

In the end, the team narrowed down possible locations of Planet Nine by eliminating approximately 78 percent of possible locations that were calculated from previous studies. Additionally, the researchers also provided new estimates for the approximate semimajor axis (measured in astronomical units (AU)) and Earth-mass size of Planet Nine at 500 and 6.6, respectively. So, what are the most significant results from this study, and what follow-up studies are currently being conducted or planned?

“While I would love to say that the most significant result was finding Planet Nine, we didn’t,” Dr. Brown tells Universe Today. “So instead, it means that we have significantly narrowed the search area. We’ve now surveyed approximately 80% of the regions where we think Planet Nine might be.”

Continue reading
  34 Hits

China's Chang'e-8 Mission Will Try to Make Bricks on the Moon

The China National Space Administration (CNSA) has put out a call for international and industry partners to contribute science payloads to its Chang’e-8 lunar lander, set for launch to the Moon in 2028. The mission, which will involve a lander, a rover, and a utility robot, will be China’s first attempt at in-situ resource utilization on the Moon, using lunar regolith to produce brick-like building materials.

Just like NASA’s Artemis plans, the CNSA’s plans for the Moon are targeted at the Lunar south pole, which is expected to be rich in useable resources, especially water. The presence of these resources will be vital for long-term human activity on the lunar surface.

Possible landing sites for Chang’e-8 include Leibnitz Beta, Amundsen crater, Cabeus crater, and the ridge connecting the Shackleton and de Gerlache craters, according to a presentation by Chang’e-8 chief deputy designer in October 2023.

Chang’e-8 will be the last CNSA robotic mission to be launched before construction begins on the International Lunar Research Station, China’s crewed moonbase being planned in collaboration with Russia’s Roscosmos. That makes Chang’e-8’s attempt to create building materials out of regolith a vital proof-of-concept for their lunar aspirations.

In order to make moon-bricks, the lander will carry an instrument that uses solar energy to melt lunar soil and turn it into useable parts at a speed of 40 cubic cm per hour.

Continue reading
  39 Hits

Can the Gaia Hypothesis Be Tested in the Lab?

During the 1970s, inventor/environmentalist James Lovelock and evolutionary biologist Lynn Margulis proposed the Gaia Hypothesis. This theory posits that Earth is a single, self-regulating system where the atmosphere, hydrosphere, all life, and their inorganic surroundings work together to maintain the conditions for life on the planet. This theory was largely inspired by Lovelock’s work with NASA during the 1960s, where the skilled inventor designed instruments for modeling the climate of Mars and other planets in the Solar System.

According to this theory, planets like Earth would slowly grow warmer and their oceans more acidic without a biosphere that regulates temperature and ensures climate stability. While the theory was readily accepted among environmentalists and climatologists, many in the scientific community have remained skeptical since it was proposed. Until now, it has been impossible to test this theory because it involves forces that work on a planetary scale. But in a recent paper, a team of Spanish scientists proposed an experimental system incorporating synthetic biology that could test the theory on a small scale.

The team included researchers from the Catalan Institution for Research and Advanced Studies (ICREA), the Universitat Pompeu Fabra’s Complex Systems Lab (UPE-CSL), the European Molecular Biology Laboratory (EMBL), and the Santa Fe Institute (SFI). Their paper, “A Synthetic Microbial Daisyworld: Planetary Regulation in the Test Tube,” recently appeared in the Journal of the Royal Society Interface. As they describe, their proposed test consists of two engineered micro-organisms in a self-contained system to see if they can achieve a stable equilibrium.

An image of Earth taken by the Galileo spacecraft in 1990. Credit: NASA/JPL

In response to challenges, Lovelock and British marine and atmospheric scientist Andrew Watson (a postgrad student of Lovelock’s) created a computer model named Daisyworld in 1983. The model consisted of an imaginary planet orbiting a star whose radiant energy slowly increases or decreases (aka. stellar flux). In the first (biological) case, the planet has a simple biosphere consisting of two species of daisies with different colors (black and white) that cause them to absorb different amounts of solar radiation.


Continue reading
  33 Hits

New NASA Report Suggests We Could See Space-Based Power After 2050

Space-based solar power (SBSP) has been in the news recently, with the successful test of a solar power demonstrator in space taking place last summer. While the concept is fundamentally sound, there are plenty of hurdles to overcome if the technology is to be widely adopted – not the least of which is cost. NASA is no stranger to costly projects, though, and they recently commissioned a study from their internal Office of Technology, Policy, and Strategy that suggests how NASA could continue to support this budding idea. Most interestingly, if the technological cards are played right, SBSP could be the most carbon-efficient, lowest-cost power source for humanity by 2050.

To be clear, there are a lot of hurdles to overcome to get to that point, but first, let’s start with what the report looked at. Its primary concern was two-fold – how expensive the electricity from a power satellite is and how high its lifecycle carbon emissions are, including those introduced to the atmosphere to get it into space in the first place.

Those two data points were analyzed for two different systems, one modular one called the SPS-Alpha Mark-III suggested by prolific inventor John Mankins, which is a little more theoretical, and another by a group of Japanese researchers called the Tethered-SPS that uses a more traditional design. In most of the calculations the report provides, the SPS-Alpha Mark-III outperforms the more conventional system. Still, there are some technical hurdles to its implementation – though nothing so complicated as some of the others discussed therein.

Fraser interviews an expert on space power – Prof Stephen Sweeney

The results report presents are not pretty for SBSP. Given their current levels of technical maturity, both solutions produce electricity that is more expensive than any existing technology. Not only that, even the more climate-friendly SPS-Alpha Mark-III is still comparable only to solar power in terms of climate impact and is beaten out by things like hydropower or even nuclear fission. So, some work needs to happen before there is any commercial incentive to adopt this technology.

Let’s tackle cost first – two big sources are the cost of getting the satellite into orbit and maintaining it when it’s up there, known as in-space assembly and maintenance (ISAM). The report even provides some allowances for the launch cost to be lower than it currently is (without fully functional Starships). But even with that lower cost, 863 launches to geosynchronous orbit for the smaller of the two systems will likely not allow any system to be cost-competitive with terrestrial alternatives.

Continue reading
  35 Hits

NASA is Done Setting Fires Inside its Doomed Cargo Spacecraft

Fire on a spacecraft can be catastrophic. It can spread quickly in a confined space, and for trapped astronauts, there may be no escape. It’s fading in time now, but Apollo 1, which was to be the first crewed Apollo mission, never got off the ground because of a fire that killed the crew. There’ve been other dangerous spacecraft fires too, like the one onboard the Russian Mir space station in 1997.

In an effort to understand how fire behaves in spacecraft, NASA began its Saffire (Spacecraft Fire Safety Experiment) in 2016. Saffire was an eight-year, six-mission effort to study how fire behaves in space. The final Saffire test was completed on January 9th.

Fire behaviour in buildings here on Earth is well-studied and well-understood. Fire prevention and suppression are important components in building design. It makes sense to bring that same level of understanding to space travel and even to surpass it.

“How big a fire does it take for things to get bad for a crew?” asked Dr. David Urban, Saffire principal investigator at NASA’s Glenn Research Centre. “This kind of work is done for every other inhabited structure here on Earth – buildings, planes, trains, automobiles, mines, submarines, ships – but we hadn’t done this research for spacecraft until Saffire.”

NASA has conducted six experiments under Saffire, and each one was conducted in an uncrewed Cygnus cargo vehicle after it completed its supply mission to the ISS. The vehicles are sent into the atmosphere to burn up, and the experiments are run prior to the vehicle’s destruction. Saffire 1 ran in 2016 inside an avionics bay with an airflow duct. The bay contained a cotton and fibreglass burn blend, which was ignited remotely with a hot wire.

Continue reading
  54 Hits

Euclid Begins its 6-Year Survey of the Dark Universe

On July 1, 2023, the Galileo Spacecraft launched with a clear mission: to map the dark and distant Universe. To achieve that goal, over the next 6 years, Galileo will make 40,000 observations of the sky beyond the Milky Way. From this data astronomers will be able to map the positions of billions of galaxies, allowing astronomers to observe the effects of dark matter.

There have been several galactic sky surveys before, but Galileo’s mission will take them to the next level. Galileo is equipped with a widefield imaging system. With each 70-minute exposure of the dark sky, it will capture the image and spectra of more than 50,000 galaxies. When it is complete, the Galileo survey will be the most detailed survey of galactic positions and distances. The mission will also make several deep sky observations, where it focuses on the most distant and dim galaxies.

Euclid’s field of view compared to the Moon. Credit: ESA/ESA/Euclid/Euclid Consortium/NASA, S. Brunier

One of the mysteries Galileo could answer is the nature of dark energy. The standard model of cosmology describes dark energy as a property of space and time. A cosmological constant that drives cosmic expansion. But some theories of dark energy argue that it’s an energy field within space and time, and that cosmic expansion isn’t constant. Galileo will study whether cosmic expansion varies, allowing astronomers to constrain or rule out certain models. The mission will also look at how dark matter distorts galaxies, allowing us to learn more about the properties of dark matter and how it interacts with regular matter.

The Euclid mission officially began its survey on Valentine’s Day and will complete about 15% of its survey this year. An initial deep sky data set will be released in Spring 2025, and data from the first year of the general survey will be released in Summer 2026.

You can read more about the Euclid Mission on ESA’s website.

  50 Hits

OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu

After several months of meticulous, careful work, NASA has the final total for their haul of asteroidal material from the OSIRIS-REx mission to Bennu. The highly successful mission successfully collected 121.6 grams, or almost 4.3 ounces, of rock and dust. It won’t be long before scientists get their hands on these samples and start analyzing them.

These samples have been a long time coming. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) was approved by NASA back in 2011 and launched in September 2016. It reached its target, the carbonaceous Apollo group asteroid 101955 Bennu, in December 2018. After spending months studying the asteroid and reconnoitring for a suitable sampling location, it selected one in December 2019. After two sampling rehearsals, the spacecraft gathered its sample on October 20th, 2020.

In September 2023, the sample finally returned to Earth.

There was some serendipity in the way the final total was reached. Some of it hitched a ride outside of the main sample container. There was some drama, too, as stubborn bolts on the TAGSAM head resisted removal and delayed access to the sample contained inside. Personnel from NASA’s Astromaterials Research and Exploration Science (ARES) had to design, build, and test new tools that they used to finally open the TAGSAM head and access the sample.

For OSIRIS-REx to be successful, it had to collect at least 60 grams of material. With a final total that is double that, it should open up more research opportunities and allow more of the material to be held untouched for future research. NASA says they will preserve 70% of the sample for the future, including for future generations.

Bennu's boulder-strewn surface. Bennu is a rubble pile asteroid that was likely part of a much larger parent body at one time in the distant past. Image Credit: NASA/University of Arizona.

Continue reading
  68 Hits

Even Stars Like the Sun Can Unleash Savage Flares in Their Youth

Why would a young Sun-like star suddenly belch out a hugely bright flare? That’s what astronomers at Harvard Smithsonian Astrophysical Observatory want to know after they spotted such an outburst using a sensitive submillimeter-wave telescope. According to Joshua Bennett Lovell, leader of a team that observed the star’s activity, these kinds of flare events are rare in such young stars, particularly at millimeter wavelengths. So, what’s happening there?

Lovell and his team targeted the star, called HD 283572, in a search for circumstellar dust. It’s fairly young—about the same age the Sun was when our planets were first forming. It lies some 400 light-years away and is roughly 40 percent more massive than our star. During the outburst, it brightened up by about a factor of a hundred over 9 hours. The flare released about a million times more energy than any millimeter flares seen on any stars near the Sun.

The whole thing was pretty unusual because at first, it didn’t give any indication that it was about to flare, according to Lovell. “We were surprised to see an extraordinarily bright flare from an ordinary young star. Flares at these wavelengths are rare, and we had not anticipated seeing anything but the faint glow of planet-forming dust.”

Lovell and his team continued to observe the star using the submillimeter array on Mauna Kea in Hawai’i for several months. The hoped to see it flare again, but it remained quiet. “Our findings confirm that these flare events are rare at millimeter wavelengths, but that these can be extremely powerful for stars at this young age,” he said.

HD 283752 and the starfield it lies in, from optical and infrared DSS survey data. The insets show  Submillimeter Array (SMA) images centered on HD 283572 taken on January 14th and 17th, 2022 and March 27th, 2023. The red source in the middle panel shows the flare witnessed on January 17th. The star was not detected by the SMA on the other two days, nor in five other SMA observations not shown here. Credit: CfA/J. B. Lovell et al.

Continue reading
  30 Hits

Ground-Based Lasers Could Accelerate Spacecraft to Other Stars

The future of space exploration includes some rather ambitious plans to send missions farther from Earth than ever before. Beyond the current proposals for building infrastructure in cis-lunar space and sending regular crewed missions to the Moon and Mars, there are also plans to send robotic missions to the outer Solar System, to the focal length of our Sun’s gravitational lens, and even to the nearest stars to explore exoplanets. Accomplishing these goals requires next-generation propulsion that can enable high thrust and consistent acceleration.

Focused arrays of lasers – or directed energy (DE) – and lightsails are a means that is being investigated extensively – such as Breakthrough Starshot and Swarming Proxima Centauri. Beyond these proposals, a team from McGill University in Montreal has proposed a new type of directed energy propulsion system for exploring the Solar System. In a recent paper, the team shared the early results of their Laser-Thermal Propulsion (LTP) thruster facility, which suggests that the technology has the potential to provide both high thrust and specific impulse for interstellar missions.

The research team was led by Gabriel R. Dube, an Undergraduate Research Trainee with the McGill Interstellar Flight Experimental Research Group (IFERG), and Associate Professor Andrew Higgins, the Principal Investigator of the IFERG. They were joined by Emmanuel Duplay, a graduate researcher from the Technische Universiteit Delft (TU Delft); Siera Riel, a Summer Research Assistant with the IFERG; and Jason Loiseau, an Associate Professor with the Royal Military College Of Canada. The team presented their results at the 2024 AIAA Science and Technology Forum and Exposition and in a paper that appeared in the AIAA journal Aerospace Research Central (ARC).

Artist’s concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA

Higgins and his colleagues originally proposed this concept in a 2022 paper that appeared in Acta Astronautica – titled “Design of a rapid transit to Mars mission using laser-thermal propulsion.” As Universe Today reported at the time, the LTP was inspired by interstellar concepts like Starshot and Project Dragonfly. However, Higgins and his associates from McGill were interested in how the same technology could enable rapid transit missions to Mars in just 45 days and throughout the Solar System. This method, they argued, could also validate the technologies involved and act as a stepping stone toward interstellar missions.


Continue reading
  28 Hits

Even if We Can’t See the First Stars, We Could Detect Their Impact on the First Galaxies

For a long time, our understanding of the Universe’s first galaxies leaned heavily on theory. The light from that age only reached us after travelling for billions of years, and on the way, it was obscured and stretched into the infrared. Clues about the first galaxies are hidden in that messy light. Now that we have the James Webb Space Telescope and its powerful infrared capabilities, we’ve seen further into the past—and with more clarity—than ever before.

The JWST has imaged some of the very first galaxies, leading to a flood of new insights and challenging questions. But it can’t see individual stars.

How can astronomers detect their impact on the Universe’s first galaxies?

Stars are powerful, dynamic objects that wield a potent force. They can fuse atoms together into entirely new elements, an act called nucleosynthesis. Supernovae are especially effective at this, as their powerful explosions unleash a maelstrom of energy and matter and spread it back out into the Universe.

Supernovae have been around since the Universe’s early days. The first stars in the Universe are called Population III stars, and they were extremely massive stars. Massive stars are the ones that explode as supernovae, so there must have been an inordinately high number of supernovae among the Population III stars.

This is Figure 6 from the research. It shows how Pop II stars have lower masses than Pop III stars and form in clusters in the fragmented clouds. "Due to the metal cooling and turbulence, these Pop II stars form into clusters along the dense filaments around the halo center," the authors write. Image Credit: Chen et al. 2024.
Continue reading
  20 Hits

Another Clue Into the True Nature of Fast Radio Bursts

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.

Most FRBs happen well beyond our galaxy, so while we can pin down their locations, it’s difficult to observe any details about their cause. Then in 2020 we observed a fast radio burst in our galaxy. Subsequent observations found that it originated in the region of a highly magnetized neutron star known as a magnetar. This led to the idea that magnetars were the source of FRBs, possibly through magnetic flares similar to solar flares. But magnetars and Sun-like stars are very different. It still wasn’t clear how a magnetar could release such a tremendous amount of energy so quickly, even with their intense magnetic fields. Now a new study suggests the magnetar’s rotation plays a key role.

The study focuses on the 2020 FRB magnetar. Known as SGR 1935+2154, it is both a magnetar and a pulsar. This means it emits a regular radio pop as it rotates. Pulsars are incredibly regular and are used as a kind of cosmic clock for everything from studying gravitational waves to hypothetical navigation through the galaxy. But over time a pulsar’s rotation slows down as rotational energy radiates away thanks to its magnetic field. By observing this rate of decay, astronomers can better understand the structure of neutron stars and magnetars.

How two magnetar glitches correlate with a fast radio burst. Credit: Hu, Chin-Ping, et al

But sometimes the rate of rotation will shift suddenly. It’s known as a glitch if the rotation suddenly speeds up, and an anti-glitch if it suddenly slows down. These glitches are thought to occur when there’s some kind of sudden structural change in the neutron star, such as a starquake.

In 2022, NASA’s Nuclear Spectroscopic Telescope Array (NUSTAR) spacecraft and the Neutron Star Interior Composition Explorer (NICER) on the international space station both observed another fast radio burst from SGR 1935+2154. Together they had X-ray data on the magnetar before, during, and after the burst. The team then looked at radio observations during the same time and found a dip in the pulsar rotation rate during the burst. This implies a connection between rotation and burst.

Continue reading
  25 Hits

SpaceZE.com