Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

White Dwarfs Might Be Less Dead Than We Thought

At the end of their lives, most stars including the Sun will become white dwarfs. After a red dwarf or sun-like star consumes all the hydrogen and helium it can, the remains of the star will collapse under its own weight, shrinking ever more until the quantum pressure of electrons becomes strong enough to counter gravity. White dwarfs begin their days as brilliantly hot embers of degenerate matter and grow ever cooler and dimmer as they age.

Because a white dwarf doesn’t produce new energy through nuclear fusion, it has only remnant thermal energy to keep it warm. This fact allows astronomers to determine the age of a white dwarf by its temperature. Basically, the cooler a white dwarf is, the older it is. But there seem to be some exceptions. Astronomers have other ways to estimate the age of a white dwarf, such as comparing it to the age of the cluster of stars it’s in. They’ve found that some white dwarfs are a bit hotter than they should be. A new study may help explain why.

Schematic representation of the two scenarios of white dwarf crystallization. Credit: Sihao Cheng and Simon Blouin

It has to do with the way the interior of a white dwarf cools over time. In its early days, a white dwarf has an exterior solid crust with a fluid interior, similar to the structure of a planet such as Earth. The interior is a hot fluid of degenerate matter, but as it cools it can crystalize. It’s generally been thought that crystalization initiates at the core where pressure is greatest, and then expands outward as the star cools. This means that white dwarfs experience a fast initial cooling, then a crystalization period where the surface temperature is fairly constant, and finally a final cooling period after core crystalization is over.

This new study shows how crystalization can occur in a different way. Rather than bulk crystalization, small crystals can form within the warm interior. Just as ice crystals are less dense than the surrounding water, so are these initial crystals of white dwarf matter. And like ice particles, these crystals float upward from the core. As a result, the crystals form an insulating layer around the still-hot core. In this model, white dwarfs don’t cool as much initially, and they stay warmer longer. This means that some white dwarfs can appear much warmer and younger than they actually are, so astronomers can’t simply use temperature as an age measure for all white dwarfs.

It isn’t entirely clear why some white dwarfs crystalize from the core outward and why some form a crystal layer, but it is likely due to differences in composition. One clue comes from the fact that most white dwarfs form from a single old star, while other white dwarfs are formed during stellar mergers. The merger of white dwarfs could have a more diverse composition that encourages the formation of a crystal layer.

Continue reading
  39 Hits

Pentagon Report Rules Out UFO Cover-Up, But the Debate Goes On

The Pentagon office in charge of investigating UFO reports — now known officially as unidentified anomalous phenomena, or UAPs — today provided its most detailed explanation for what it said were false or misconstrued claims of alien visitations over the decades.

The first volume of a historical record report released by the All-domain Anomaly Resolution Office, or AARO, in response to a congressional mandate did include a fresh disclosure: During the 2010s, U.S. government officials considered a proposed program code-named “Kona Blue” that would have looked into the possibility that extraterrestrial technology could be reverse-engineered. But the Department of Homeland Security rejected the idea because it lacked merit, the report said.

“It is critical to note that no extraterrestrial craft or bodies were ever collected — this material was only assumed to exist by Kona Blue advocates and its anticipated contract performers,” according to the report. The same assumptions were made by outside investigators who delved into UAP reports as part of an earlier Pentagon-funded program, AARO said.

One of the investigators involved in that program — which was known as the Advanced Aerospace Weapons System Application Program or the Advanced Aerospace Threat Identification Program (AAWSAP/AATIP) — made clear that he’d continue trying to keep the alien angle in the public eye.

“Today the Pentagon and its current UAP investigative program, AARO, issued a public report that is intentionally dishonest, inaccurate and dangerously misleading,” Lue Elizondo, who helped spark renewed interest in UFO reports in 2017, said in a posting to X / Twitter. “Myself and others who are aware of the truth are going to keep working to help Congress in their efforts to achieve disclosure.”

Continue reading
  42 Hits

Science Fiction is Learning About Exoplanets From Science

As long as it has existed as a genre, there has been a notable relationship between science fiction and science fact. Since our awareness of the Universe and everything in it has changed with time, so have depictions and representations in popular culture. This includes everything from space exploration and extraterrestrial life to extraterrestrial environments. As scientists keep pushing the boundaries of what is known about the cosmos, their discoveries are being related to the public in film, television, print, and other media.

In the field of science communication, however, there is a certain hesitancy to use science fiction materials as an educational tool. In a recent paper that appeared in the Journal of Science Communication (JCOM), a team from the St Andrews Centre for Exoplanet Science and the Space Research Institute (IWF) of the Austrian Academy of Sciences focused on a specific area of scientific study – extrasolar planets. After analyzing a multimedia body of science fiction works produced since the first confirmed exoplanet discovery, they found that depictions have become more realistic over time.

The team was led by Emma Johanna Puranen, a St Leonard’s Interdisciplinary Doctoral Scholar at the University of St Andrews with degrees in astronomy and history. She was joined by Emily Finer, a senior lecturer at the University of St Andrews and co-director of the interdisciplinary St Andrews Centre for Exoplanet Science; V Anne Smith, a senior lecturer in the School of Biology and associate dean curriculum for the faculty of Science at the University of St Andrews, and the IWF Director Christiane Helling. Together, they conducted a Bayesian network analysis of exoplanet representations before and after the discovery of actual exoplanets.

Artist’s concept of the exoplanet, LTT 1445Ac, which is a nearby Earth-size world that orbits a red dwarf star in a trinary system. Credit: NASA/ESA/L. Hustak (STScI)

The interrelationship between scientific discovery and their portrayal in science fiction is certainly well-known. However, that does not mean that the phenomenon is well-understood, and attempts to study it are still in their infancy. As part of her thesis work, Puranen and her colleagues sought to address this by documenting a key example. As she explained to Universe Today via email, it is difficult to pin down when the tradition of science informing science fiction began since its roots go rather deep:


War of the Worlds
Continue reading
  33 Hits

Satellite Measurements Show That Global Carbon Emissions are Still Rising

According to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), human activities have significantly impacted the planet. As global greenhouse gas emissions (mainly carbon dioxide) have continued to increase, so too have global temperatures – with severe ecological consequences. Between 2011 and 2020, global surface temperatures rose by an estimated 1.07 °C (2.01 °F) above the average in 1850–1900. At this rate, temperatures could further increase by 1.5 to 2 °C (2.7 to 3.6 °F) in the coming decades, depending on whether we can achieve net zero by 2050.

Unfortunately, the data for the past year is not encouraging. According to the 2023 Global Carbon Budget (GCB), an annual assessment of Earth’s carbon cycle, emissions in 2023 continued to rise by 1.1 percent compared to the previous year. This placed the total fossil fuel emissions from anthropogenic sources at 36.8 billion metric tons (over 40 US tons) of carbon dioxide, with an additional 4.1 billion metric tons (4.5 US tons) added by deforestation, extreme wildfires, and other sources. This trend indicates we are moving away from our goals and that things will get worse before they get better!

Carbon budgets are essential for assessing humanity’s impact on the planet and implementing mitigation strategies. The budget quantifies how much carbon was added to the atmosphere from fossil fuel use, land-use change, and other factors relative to how much carbon was removed by the planet’s carbon cycle. This refers to how our planet and its ecosystems recycle carbon, which keeps carbon dioxide levels in our atmosphere within certain parameters and ensures temperatures remain stable over time.

Carbon dioxide in Earth’s atmosphere if half of global-warming emissions are not absorbed. Credit: NASA/JPL/GSFC

For eons, this balance was maintained by photosynthetic plants, organisms, and Earth’s oceans, which absorbed CO2 from the atmosphere. Meanwhile, geological forces (i.e., mantle convection) sequestered it in the Earth’s crust as carbonate rocks. Since the Industrial Revolution, fossil fuel consumption has sharply increased, which has become exponentially worse since the mid-20th century. In addition, the growth of global populations since the 19th century has also seen a commensurate increase in land clearance and ecological destruction.


Continue reading
  40 Hits

Astronomers Image 62 Newly-Forming Planetary Systems

Astronomers using the Very Large Telescope in Chile have now completed one of the largest surveys ever to hunt for planet-forming discs. They were able to find dozens of dusty regions around young stars, directly imaging the swirling gas and dust which hints at the locations of these new worlds.

Just like the wide variety in the types of exoplanets that have been discovered, these new data and stunning images show how protoplanetary systems are surprisingly diverse, with different sizes and shapes of disks.

In research presented in three new papers, researchers imaged 86 young stars and found 62 of them had a wide range of star-forming regions surrounding them. The astronomers say this study provides a wealth of data and unique insights into how planets arise in different regions of our galaxy.

Planet-forming discs around young stars and their location within the gas-rich cloud of Taurus, roughly 600 light-years from Earth. The background image shows an infrared view of Taurus captured by the Infrared Astronomical Satellite. Credit: ESO/A.Garufi et al.; IRAS

“Some of these discs show huge spiral arms, presumably driven by the intricate ballet of orbiting planets,” said Christian Ginski, from the University of Galway, Ireland, and lead author of one of the three papers published in Astronomy & Astrophysics.

“Others show rings and large cavities carved out by forming planets, while yet others seem smooth and almost dormant among all this bustle of activity,” said Antonio Garufi, an astronomer at the Arcetri Astrophysical Observatory, Italian National Institute for Astrophysics (INAF), and lead author on another paper.



Continue reading
  49 Hits

Into Totality: Our Complete Guide to the April 8th Total Solar Eclipse Across North America

What to watch for on April 8th as totality sweeps across the continent.

The time has come. Seven years ago on an August afternoon, the shadow on the Moon swept across the United States. Now we’re in the one month stretch, leading up to the big ticket astronomical event for 2024: the April 8th total solar eclipse spanning North America.

This is the last total solar eclipse for the ‘lower 48 states’ until August 23rd, 2044. Totality does nick remote northwest corner of the state of Alaska on March 30th, 2033. The path of totality on April 8th spans Mexico, the contiguous United States from Texas to Maine, and the Canadian Maritimes.

The path of the April 8th, 2024 total solar eclipse. Credit: Michael Zeiler/Great American Eclipse

The eclipse will be partial from southeast Alaska, all the way down to the very northwest edge of South America. Hawaii will see a rising partial. On the other end, Iceland and the very western coast of Ireland will see the reverse underway at sunset.

A rising partial solar eclipse, over NASA’s Vehicle Assembly Building. Credit: Dave Dickinson

The first eclipse season of 2024 actually begins on the night of Sunday/Monday March 24/25. A penumbral lunar eclipse that night puts the whole celestial game into play. This subtle eclipse is visible from the Americas. Don’t expect to see much more than a slight ragged darkening on the southwest limb of the Moon around 7:12 Universal Time.

Eclipse
Eclipse
Eclipse
Eclipse
Projecting
Sky
Eclipse
Eclipse
WB-57
Continue reading
  71 Hits

This Galaxy Was Already Dead When the Universe Was Only 700 Million Years Old

When a galaxy runs out of gas and dust, the process of star birth stops. That takes billions of years. But, there’s a galaxy out there that was already dead when the Universe was only 700 billion years old. What happened to it?

That’s what an international team of astronomers wants to know. “The first few hundred million years of the Universe was a very active phase, with lots of gas clouds collapsing to form new stars,” said Tobias Looser from the Kavli Institute for Cosmology at the University of Cambridge. “Galaxies need a rich supply of gas to form new stars, and the early universe was like an all-you-can-eat buffet.”

So, when the galaxy JADES-GS-z7-01-QU showed up in a JWST observation, it didn’t exhibit much evidence of ongoing star formation. (JADES stands for JWST Advanced Deep Extragalactic Survey.) It’s in what astronomers refer to as a “quenched” state and looks like star formation started and quickly stopped. Figuring out why this happened to the young galaxy is an important step in cosmology. Why did it stop creating stars? And, were the factors that affect star formation the same then as they are today?

Composite image of the GOODS-South field where galaxy JADES-GS-z7-01-QU lies. This is part of a deep survey using two 8.2-meter telescopes. JWST later zeroed in on a small portion of this field.
(Credit : ESO/M Hayes)

Star-formation quenching is something astronomers don’t expect to happen quickly. “It’s only later in the universe that we start to see galaxies stop forming stars, whether that’s due to a black hole or something else,” said Dr Francesco D’Eugenio, also from the Kavli Institute for Cosmology and a co-author with Looser on a recent paper about JADES-GS-z7-01-QU.

The epoch of reionization was when light from the first stars could travel through the early Universe. At this time, galaxies began assembling, as did black holes. The young galaxy JADES-GS-z7-01-QU went through a star burst phase during this time, and then stopped forming stars. Credit: Paul Geil & Simon Mutch/The University of Melbourne
Continue reading
  28 Hits

Perseverance Sees Phobos, Deimos and Mercury Passing in Front of the Sun

NASA’s Perseverance rover is busy exploring the Martian surface and collecting samples for eventual return to Earth. But the rover recently took some time to gaze upward and observe the heavens. Using Mastcam-Z, the rover’s primary science camera, Perseverance captured Phobos, Deimos, and Mercury as they transited in front of the Sun.

Phobos and Deimos are unusual. They’re lumpy and are often referred to as ‘potato-shaped.’ They’re quite close to their planet as moons go, and they’re most likely captured objects, either asteroids or chunks of debris from the Solar System’s early days. They’re also small for primary moons, and both are tidally locked to Mars.

They share the same composition as carbonaceous chondrite asteroids and also have low albedoes. Both those traits bolster the captured asteroid argument. Phobos has the more unstable orbit of the two, and that reflects a more recent capture. Some think that Phobos and Deimos may have been a single object that only broke into two when it was captured.

But, some aspects of Phobos go against the capture theory. It contains some of the same phyllosilicate minerals that Mars does. This points to an alternate formation. A powerful impact could’ve lofted Martian debris into orbit, and the debris could’ve coagulated together to form the small moon. That may have been how Earth’s Moon formed.

On the other hand, both moons have circular orbits near the Martian equator. That hints at a more complex past, including an impact or the involvement of a third body.

Continue reading
  33 Hits

How Long Will Advanced Civilizations Try to Communicate With Us?

Technosignature research is heating up, with plenty of papers speculating on the nature, and sometimes the longevity, of signals created by technically advanced extraterrestrial civilizations. While we haven’t found any so far, that isn’t to say that we won’t, and a better understanding of what to look for would undoubtedly help. Enter a new paper by Amedeo Balbi and Claudio Grimaldi, two professors at the Universita di Roma Tor Vergata and the Ecole Polytechnique Federale de Lausanne, respectively. They have taken a statistical model to the problem of understanding how old a technosignature might be before we are likely to find it – and their answer is, surprisingly young.

We’ve reported before on how another recent paper thought that any civilization that created a technosignature that we can see is likely to be much older than ours. Simply put, technosignatures can last a long, long time. Over those long periods, the technosignatures can travel to places that are farther away. Given the extreme longevity of some of these civilizations, it turns out we are more likely to come across a technosignature that has been around for a very long time rather than one just created recently.

However, one big assumption in the previous paper is that the technosignature would last for extremely long periods. That assumption might not always hold, as many technosignatures have to be actively supported, such as radio signals or artificial lights on a planet. Given the active support these require, it’s likely they wouldn’t be supported anywhere near as long as implied by the previous paper.

Fraser discusses the idea of technosignatures.

Drs. Balbi and Grimaldi instead use a statistical technique to more accurately reflect what they think the actual situation in the universe would be – civilizations actively support their technosignatures for some time but let them die off once they are no longer beneficial to the civilization itself – essentially eliminating our chance to find them. From a statistical point of view, this clusters the vast majority of observable technosignatures to the far left of the x-axis, where that axis is defined as the longevity of a civilization. 

We could see some obvious technosignature that have been around for billions of years and don’t require any active support, such as the thermoradiation of a Dyson sphere. But it’s much more likely that, if we do see one, it is actively being supported by an active civilization. 

Continue reading
  33 Hits

One of the Oldest Astrolabes Has Both Hebrew and Arabic Markings

I always think of planispheres when I think of astrolabes! Navigators used these ancient devices (astrolabes not planispheres) to provide an accurate map of the stars in the sky. To use them you would match up the metal plates to the sky and you could calculate your location. Astrolabes date back to 220BC but one with Hebrew and Arabic markings was found and it is thought to have originated back in the 11th Century.

Historian at Christ’s College, Cambridge, Dr Federica Gigante came across the astrolabe by chance in an image on the website of Fondazione Museo Minisccalchi-Erizzo in Verona. Dr Gigante published an article in Nuncius (the Journal of the Material and Visual History of Science) and suggests that the ancient device had been changed a number of times. After it was made, it seems to have been physically adapted, translated and corrected over the centuries by Muslim, Jewish and Christian sky watchers from Spain, North Africa and Italy. 

Having seen the astrolabe online, Dr Gigante visited the museum to study it up close. She reports “When I visited the museum and studied the astrolabe up close, I noticed that not only was it covered in beautifully engraved Arabic inscriptions but that I could see faint inscriptions in Hebrew. I could only make it out in the raking light entering from the window. I thought I might be dreaming but I kept seeing more and more. It was very exciting.”

The astrolabe has a feature known as a ‘rete’ which is a pierced disk that represents a map of the sky. The position of the stars upon the disk reveal that they were added on the instrument in the late 11th Century making it one of the earliest astrolabes made in Spain.  Dr Gigante is well placed to analyse it as she is an expert on Islamic scientific instrument. The engravings and arrangement of the scales reminded her of instruments made in the Muslim ruled area of Spain known as Al-Andalus.  In her article she reports it may have been made in Toledo which would have been a place of co-existence between Muslims, Jews and Christians at the time.

Careful study revealed Jewish names in Arabic script which suggested it had been used in the Sephardi Jewish community where Arabic was the language of the day. There was a second plate which had been added after the astrolabe had been made and had been inscribed for North African users. It may have been used therefore, in Morocco in Egypt. Further to the African, Arabic and Jewish links the Hebrew markings suggested it had left Spain and North Africa and found its way to Italy where it was likely to be used by the Jewish Diaspora community that would use the Hebrew language instead. 

Continue reading
  29 Hits

Drones Could Help Map the Lunar Surface with Extreme Precision

Exploring the Moon has become increasingly more of a focal point lately, especially with a series of landers recently launched with various degrees of success. One of the difficulties those landers and any future human missions face is understanding the terrain they are landing on and potentially traversing in the case of a rover or human. To help fight this problem, a team of researchers from Switzerland has developed a drone concept that could help map out some of the more interesting, potentially hazardous areas to explore on the Moon.

Mapping the Moon has already been a priority for years. However, some of the more exciting regions, such as the Permanently Shadows Regions (PSR) at the lunar poles that hold a significant amount of water ice, have only been mapped to a resolution of about 1m per pixel in the best images of them. That’s including artificial enhancement by AI-backed algorithms. 

That level of resolution isn’t near enough to provide useful planning data for any potential rover or human missions – a given rover’s wheel itself won’t even more that in width, let alone hope to traverse an obstacle of that size. Consequently, any rovers we send must be manually controlled or make their way very slowly and autonomously. Given the limited operational timeline of these expected rover missions, that slow pace could limit their ability to search out the valuable resources and sites that scientists think are hiding in the PSRs.

Fraser discusses the Artemis I moon mission that is NASA’s first step to sending humans back.

The obvious solution to this problem is to have another form of robot serve as a scout, similar to what Ingenuity had been doing for the Perseverance rover on Mars up until recently. That collaboration had allowed Perseverance to set the record for longest single-day autonomous drive on another planet – totaling about 700 m. If a scout were able to map out details of the lunar surface in front of a potential rover, it could move even faster than the pace set by Perseverance. 

To this end, there have been plenty of planned missions to do just that. In a recently released paper describing their idea, Romeo Tonasso and his colleagues at the Ecole Polytechnique Federale de Lausanne split these existing mission concepts into two categories – large and small. Larger systems can contain tested, off-the-shelf chemical propulsion systems that, when flight-tested, can be bulky and use potentially hazardous chemicals. Smaller systems could use different forms of chemical propulsions, such as H2O2 rockets, or even more mundane means of locomotion, such as by literally jumping off the ground using legs. However, many of the technologies for that type of propulsion aren’t yet at a high enough development level for use in a practical mission.

Continue reading
  32 Hits

Perseverance is Keeping Track of the Big Picture While it’s Exploring Mars

It’s always a real benefit to have scientists on the ground, able to use the wealth of their experience and ingenuity to ‘think on their feet’.  It is therefore always quite challenging to use space probes that to a degree need to be autonomous. This is certainly true of the NASA Perseverance Rover that has been drilling core samples that will one day (hopefully) be returned to Earth as part of the Mars Sample Return mission. Until then, a team of Geologists have developed a technique to calculate the orientation of the core samples to help with future analysis. 

The journey of Mars Perseverance began on 30 July 2020 when it was launched off to the red planet. Arriving less than a year later on 18 February 2021, the rover carried with it an array of instrumentation. Its goal to explore the past habitability of Mars, looking for signs of ancient microbial life and helping to pave the way for future human exploration. 

A United Launch Alliance Atlas V rocket with NASA’s Mars 2020 Perseverance rover onboard launches from Space Launch Complex 41 at Cape Canaveral Air Force Station, Thursday, July 30, 2020, from NASA’s Kennedy Space Center in Florida. The Perseverance rover is part of NASA’s Mars Exploration Program, a long-term effort of robotic exploration of the Red Planet. Photo Credit: (NASA/Joel Kowsky)

One instrument in particular, the Sample Caching System, gathered and stored rock and soil samples for the potential return to Earth by future missions. Perseverance and the Ingenuity drone have been exploring the Jezero crater, an ancient lake bed since. To date, 20 of the 43 tubes have been filled with core bedrock samples and a team of geologists have been looking at the original orientation of the samples to help answer questions about the planet’s past. 

The research, which appeared in Earth and Space Science journal by lead authors Benjamin P. Weiss and Elias N. Mansbach explains that the team have identified the original orientation of the majority of the samples collected so far. This crucial bit of information will help geologists to understand the magnetic field that may have existed at the time the rocks formed, how water and lava has flowed, the direction of wind and the tectonic processes that were going on too. 

Using data from the rover itself including its location and the positioning of the drill it was possible to calculate the orientation of the bedrock sample before it was drilled out. This will be the first time scientists have managed to orient the rock samples from another world. By completing the process for a number of samples at different locations will give clues to the conditions on Mars when the rocks formed.

Continue reading
  28 Hits

Now You Can See Exactly Where Hubble and JWST are Pointed

Hubble and JWST are busily scanning the sky, sending home enormous amounts of data. They shift from target to target, completing the required observations.

But have you ever wondered what those two space telescopes are doing right at this moment? Now, you can do just that at the new Space Telescope Live website. It will show you what each observatory is scanning, where the objects are in the sky, and what researchers hope to learn. You can even go back or forward in time and see what each telescope has been looking at in the past or what observations are coming up.

A screenshot of JWST observations shown on the Space Telescope Live website on March 7, 2024.

NASA says that this exploratory tool offers the public “a straightforward and engaging way to learn more about how astronomical investigations are carried out.” You can also find out more about the science instruments, review each research proposal, and click through the entire catalog of past Hubble and JWST observations.

The Space Telescope Science Institute in Baltimore, Maryland is the science operations center for the Hubble Space Telescope, as well as the science operations and mission operations center for the James Webb Space Telescope. STScI says information about each observation on the new website, such as target name and coordinates, scheduled start and end times, and the research topic, are pulled directly from the observation scheduling and proposal planning databases kept at the Institute. Links within the tool direct users to the original research proposal, which serves as a gateway to more technical information.

All the information for observations from approved science programs is kept in a repository called the Mikulski Archive for Space Telescopes. The Space Telescope Live website offers easy access to this information. The entire catalog of past observations for JWST goes back to its first commissioning targets in January 2022, and Hubble observing records go all the way back to the beginning of its operations in May 1990.

Continue reading
  29 Hits

Betelgeuse’s Surface is Boiling Furiously

Of all the stars in the sky, betelgeuse must be among the most enigmatic. One of its many mysteries surrounds the speed of its rotation which is surprisingly fast for a supergiant star. If it were placed where the Sun was, then its photosphere (visible layer) would be out around the orbit of Jupiter and it would be moving at 5 km/s. A new study now hints that instead of high rotation, it may be that the surface is boiling so furiously that it has been mistakingly identified as fast rotation. 

Betelgeuse is one of the first stars an amateur astronomer will learn. Its distinctive red colour in the upper left corner of Orion makes it a prominent star, easy to find and identify and a great signpost to other constellations. We all know that stars are big but Betelgeuse takes this to a whole new level at 1.2 billion km across, almost 2,000 larger than the Sun. Stars of this size are usually expected to rotate slowly but observations revealed its high rotation speed, far higher than expected of a star at this evolutionary stage. 

Orion and the molecular cloud covering the region. Betelgeuse is the red star in the upper left. (Credit : Rogelio Bernal Andreo)

Observations from the Atacama Large Millimetre Array pointed at the rotation speed of Betelgeuse. The system, which is made up of 66 antennae is a radio interferometer that combines the signal from all dishes to increase its sensitivity. Using this instrument, astronomers had concluded that one hemisphere seems to be approaching while the other seems to be receding and the rate of this led to the conclusion of a 5 km/s rotation speed. If Betelgeuse was a perfect sphere then this would have been a reasonable conclusion however, the surface of Betelgeuse is not like that! 

Two of the Atacama Large Millimeter/submillimeter Array (ALMA) 12-metre antennas gaze at the sky at the observatory’s Array Operations Site (AOS), high on the Chajnantor plateau at an altitude of 5000 metres in the Chilean Andes. There is now a total of 66 antennae, 54 of them with 12-metre diameter dishes, and 12 smaller ones, with a diameter of 7 metres each. The ALMA project is an international collaboration between Europe, East Asia and North America in cooperation with the Republic of Chile. ESO is the European partner in ALMA.

Like all stars, convection is a prominent process in the photosphere that brings heat from the stellar interior. In the case of Betelgeuse the convection cells are massive, sometimes even as large as the Earth’s orbit around the Sun and they rise and fall at speeds around 30 km/s (that’s over twice the escape velocity of the Earth so is faster than any launching spacecraft).

Jing-Ze Ma PhD from the Max Planck Institute for Astrophysics now proposes that the dipolar velocity map which identified the approaching and receding hemispheres, may actually have been picking up convection cells instead. The theory postulates that the limited resolution of the ALMA system was observing (but not able to differentiate) convection cells rising on one side of the star and sinking on the other. 

ALMA
Continue reading
  26 Hits

Crew-8 Arrives at the ISS, Despite a Crack in the Capsule

Space travel seems to be a fairly regular occurrence now with crews hopping up and down to the International Space Station. This week, another crew arrived on board a SpaceX Dragon capsule known as Endeavour.  On board were NASA astronauts Matthew Dominick, Michael Barratt and Jeanette Epps along with cosmonaut Alexander Grebenkin. The ISS already had seven people on board so this brought the total crew to eleven. The launch almost got cancelled due to a crack in the hatch seal. 

The construction of the International Space Station began in 1998 with the launch of the Zarya module on 20 November. It was finally completed in when the final Russian research module Rassvet was added in in May 2010 with the station completed in 2011. Despite not being finished until then, the first crew, known as Expedition 1 arrived on 2 November 2000 and it has been occupied ever since. 

International Space Station. Credit: NASA

Now completed, the station is 109m x 73m and has 16 pressurised modules within which the crew live, sleep and conduct experiments while orbiting the Earth. Getting to and from the ISS is never an easy mission, after all you can’t just nip up to it on a whim, at least not yet – I’m sure in the future this will be a thing but alas not just yet. Currently the only way to the ISS is either the SpaceX Dragon capsule or in the case of the Russian cosmonauts, the Soyuz module. 

The latest team, Crew 8, launched from pad 39A at the Kennedy Space Centre around 4am on Monday 4th March. They have joined the Expedition 70 crew comprising of Jasmin Moghbeli, Loral O’Hara, from ESA (European Space Agency) Andreas Mogensen from JAXA (Japan Aerospace Agency) Satoshi Furukawa, and cosmonauts Konstantin Borisov, Oleg Kononenko, and Nikolai Chub. The trip to ISS however, nearly got scrubbed 30 mins before launch!

The engineer team completing the final checks of the hatch and its sealing systems noticed a crack when documenting the findings. It may sound serious and to be fair, I wouldn’t want to fly into space with something that had a dodgy seal. The crack the team identified though was in a silicon like sealant that was a top coating to the hatch pressure seal which itself is over the main seal for the hatch. Fortunately, the silicon like material (known as RTV) expands under heating so it was hoped it would seal itself on launch. 

Continue reading
  31 Hits

Astronomers Find the Most Massive Pair of Supermassive Black Holes Ever Seen

Supermassive black holes have been found at the heart of most galaxies but understanding how they have formed has eluded astronomers for some time. One of the most popular theories suggests they merge over and over again to form larger black holes. A recent discovery may support this however the pair of supermassive black holes are orbiting 24 light years apart and measure an incredible 28 billion solar masses making it the heaviest ever seen. 

A black hole is a region of space within which the escape velocity is greater than the speed of light. Ok so the definition is a little more complicated than that but that will suffice for now. They are objects that have undergone gravitational collapse with their largest versions, the supermassive black holes which have a mass from hundreds of thousands to billions of times that of the Sun. It’s now thought that nearly every massive galaxy has a supermassive black hole at its core. 

Galaxy mergers seem to be common with many examples visible in the sky like the classic Whirlpool Galaxy in the northern hemisphere. When they do, it is thought their black holes can form a binary pair. Ultimately it is believed they merge however this has never been observed. A paper that was recently published in the Astrophysical Journal and authored by a team led by Tirth Surti explores this process. 

Magnetic fields mapped within the Whirlpool Galaxy. Credit: NASA, SOFIA science team, ESA, STScI

One such binary black hole system exists inside elliptical galaxy B2 0402+379 (a catchy name if ever there was one) and the team analysed its data from the Gemini North Telescope. It’s possible to resolve this binary system so the team could study it in more detail than any before. The black holes are separated by only 24 light years and data shows the system to be an impressive 28 billion times the mass of the Sun. 

The team studied the stars in the vicinity of the black holes using the Gemini Multi-Object Spectrograph (GMOS) so they could determine their velocity. Measuring the velocity enabled the team to determine the mass of the black hole binary pair but also supports the theory that the mass of the black hole plays a role in delaying and even stalling their merging!

Continue reading
  32 Hits

What’s the Best Way to Pack for Space?

Packing to go to space is a lot like getting ready for a plane ride with only a carry-on bag. You have to maximize the use of the space in your bag at the same time you want to make sure you have what you need. That’s the challenge astronauts face in the upcoming Artemis moon missions. So, NASA held a competition to figure out the best and most innovative ways to store cargo for the missions.

The Lunar Gateway Cargo Packing and Storing challenge asked members of the public to come up with good ways to pack materials in the limited space on the lunar Gateway that will be orbiting the Moon. The idea inspired some 90 participants from 35 countries to step up and show off their packing skills. It also helped that there were cash prizes for the winners. Everybody submitted written solutions and 3D computer models to show what could be done for astronauts who would need easy, quick access to their cargo.

The design parameters had to take into account storing the cargo delivered to the gateway by the logistics module. The most efficient space design would allow astronauts to access the cargo easily in the module, which will also be their food and supply storage room, plus a place to store trash. So, given everything that needs to be placed there efficiently, the idea was to maximize volume and minimize mass.

The best design came from Austria, made by designer Kriso Leinfellner. It’s called QASIS, short for Quick Access Storage in Space. It’s a fairly straightforward method of stacking and packing that maximizes the amount of space the cargo takes up. It also proposes lightweight storage structures and does not rely on motors or batteries to power cranes or other equipment to move the boxes.
Leinfellner won $3,000.00 for this design.

Four other prizes of amounts ranging from $2,000.00 to $250.00 were awarded to winners from Turkey, Brazil, Nigeria, and Germany. They took into account launch and orbital conditions, and several specified manual and/or automated systems to move cargo around for access.

The complex logistics of the Artemis mission are managed from two NASA Centers. Courtesy NASA.
Continue reading
  45 Hits

Webb Sees a System That Just Finished Forming its Planets

Nearly 5 billion years ago a region of gas gravitationally collapsed within a vast molecular cloud. At the center of the region, the Sun began to form, while around it formed a protoplanetary disk of gas and dust out of which Earth and the other planets of the solar system would form. We know this is how the solar system began because we have observed this process in systems throughout the galaxy. But there are details of the process we still don’t understand, such as why gas planets are relatively rare in our system.

Our solar system only has four gas planets. The rest are the rocky worlds of the inner solar system. Then there are countless asteroids and the icy worlds of Pluto and the outer solar system. Most of them don’t contain a lot of volatile gasses, which is strange because early protoplanetary disks typically have a hundred times more gas than dust. So how does a gassy disk evolve into a planetary system of mostly rock? The answer can be found in recent observations of a young system known as TCha.

The general idea is that during the later stage of planetary formation the central star increases in brightness. The light from the star then drives winds within the disk which clears any remaining gas from the system. While this model can explain the type of planetary systems we observe, the process hasn’t been observed directly. That is, until this recent study.

How photon pressure can clear a planetary system of gas. Credit: Naman S. Bajaj, et al

TCha is a system in the late stages of planetary formation. Earlier observations found it has a large dust gap within the disk with a radius of more than 30 AU, indicating that much of the early material has already cleared. So in this new study, the team used observations from the James Webb Space Telescope (JWST) to measure the spectral lines of ionized argon and neon. This study is the first observation of a particular argon line, Ar III.

The team made two main discoveries. The first is based on the ionizing energy levels, which indicates that argon is mostly ionized by extreme ultraviolet light, while neon is mostly ionized by X-rays. The second is that both gases are rapidly expanding away from the star, as seen by the Doppler shift of the spectral lines. Together these discoveries show that the gases are part of a stellar wind driven by high-energy photons.

Continue reading
  31 Hits

Webb Sees a Surprisingly Active Galaxy When the Universe Was Only 430 Million Years Old

Unlocking the mysteries of the early Universe is one of the JWST’s primary endeavours. Finding and examining some of the first galaxies is an important part of its work. One of the Universe’s first galaxies is extraordinarily luminous, and researchers have wondered why. It looks like the JWST has found the answer.

The galaxy at issue is named GN-z11, and it existed when the Universe was less than half a billion years old. The Hubble first spotted it in 2016, with help from the Spitzer Space Telescope. At the time, it was the most distant, ancient galaxy ever spotted. In the paper announcing the discovery, the authors wrote, “GN-z11 is luminous and young, yet moderately massive, implying a rapid build-up of stellar mass in the past.”

They also wrote that “Future facilities will be able to find the progenitors of such galaxies at higher redshift and probe the cosmic epoch at the beginning of reionization.” Now that the JWST is deep into its mission, that’s exactly where we find ourselves. It also took a closer look at GN-z11.

The discoverers suggested that the galaxy’s high luminosity could be caused by an active galactic nucleus (AGN) but weren’t certain. New research based on JWST observations shows that they were right. It looks like the galaxy’s luminosity comes from a supermassive black hole (SMBH) in the galaxy’s centre, lighting it up as it actively accretes matter. One of the telltale signs is a gas clump near the SMBH.

“We found extremely dense gas that is common in the vicinity of supermassive black holes accreting gas,” explained principal investigator Roberto Maiolino of the Cavendish Laboratory and the Kavli Institute of Cosmology at the University of Cambridge in the United Kingdom. “These were the first clear signatures that GN-z11 is hosting a black hole that is gobbling matter.”

Population III stars were the Universe's first stars and contained only hydrogen and helium. They were extremely massive, luminous stars, and many of them exploded as supernovae. Image Credit: DALL-E
Continue reading
  34 Hits

Juno Measures How Much Oxygen is Being Produced by Europa

If the periodic table listed the elements in order of their importance to life, then oxygen might bully its way to the top. Without oxygen, Earth’s complex life likely would not exist. So when scientists detect oxygen on another world, they turn their attention to it.

During Juno’s ambitious mission to the Jovian system, it performed some flybys and observations of some of the Jovian moons. One of those moons, Europa, is a prime target in the search for life because of its subsurface ocean. It became an even more important target when scientists realized that the icy moon was producing oxygen.

We can’t see it with our organic eyes, but Europa’s surface is under bombardment. Not by rocky objects, which do strike occasionally, but by energetic particles. Europa is in a perilous position so close to giant Jupiter, and the planet makes its presence known.

Jupiter’s enormously powerful magnetic field sends a constant stream of charged particles at Europa. The much smaller moon has no defence. When those particles strike Europa’s icy surface, they split water molecules apart and produce hydrogen and oxygen.

“Europa is like an ice ball slowly losing its water in a flowing stream. Except, in this case, the stream is a fluid of ionized particles swept around Jupiter by its extraordinary magnetic field,” said JADE scientist Jamey Szalay from Princeton University in New Jersey. “When these ionized particles impact Europa, they break up the water-ice molecule by molecule on the surface to produce hydrogen and oxygen. In a way, the entire ice shell is being continuously eroded by waves of charged particles washing up upon it.”


Image of Europa's ice shell, taken by the Galileo spacecraft, of fractured "chaos terrain." In this terrain, cracks, ridges, and plains are all jumbled together. Scientists think that this terrain allows surface oxygen to penetrate the ice and make its way into the subsurface ocean. Image Credit: NASA/JPL-Caltech
This figure from the 2022 research helps explain how oxygen could make it through the ice and into Europa's ocean. Some of the O2 is released into the moon's atmosphere, but most of it returns to the icy regolith and is trapped in bubbles. The bubbles are the dominant near-surface reservoir for oxidants. Over thousands of years, the bubbles can make their way down to the ocean. Image Credit: Hesse et al. 2022.
This figure from the research illustrates Juno's path through Europa's torus during the spacecraft's extended mission. The inset diagram shows how charged particles split H2O molecules into hydrogen and oxygen. The hydrogen escapes into space, but the heavier oxygen sinks back to the surface. Image Credit: Szalay et al. 2024.
Continue reading
  29 Hits

SpaceZE.com