Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

Here are the Next Three Total Solar Eclipses Coming Up

Millions of people took a trip over to the US or Mexico to try and catch a glimpse of the 2024 total solar eclipse. Whether you took the trip or not, if you have since been bitten by the eclipse bug then there are three upcoming eclipses over the next couple of years. August 2026 sees an eclipse passing from Greenland, Iceland and Spain, 2027 sees an eclipse over North Africa and in 2028 Australia all be the place to be. With loads of possibilities for all locations, it’s time to get planning. 

Many people across the World make attempts to witness solar eclipses, often travelling hundreds if not thousands of kilometres. I tried such a journey back in 1999 travelling from my home in Norfolk, UK to Cornwall, a journey of over 600 kilometres. Alas, and like many eclipse chasers before me, cloud thwarted my view. However, the experience of the daylight turning to dusk in a few seconds at the onset of totality, the birds singing as the ‘Sun came out again’, it was all such an incredible amazing experience. 

Since that cloudy experience in Cornwall I committed to one day, actually seeing a total solar eclipse. I have seen partials, and they are wonderful but nothing like the majesty of a total solar eclipse.

What are we talking about? Well, the Moon travels around the Earth and the Earth travels around the Sun. It’s these changing relative positions that lead to the lunar phases. When the Moon is broadly between the Sun and Earth we experience a new moon phase. You might therefore wonder why we don’t experience a total solar eclipse every new moon! The answer lies in the obits; the orbit of the Moon around Earth is tilted by about 5 degrees in reference to the Earth’s orbit around the Sun. During most new moons the Moon is slightly above or below the Sun when viewed from Earth. It’s only when the two orbits intersect at a new moon that we see a total solar eclipse. 

This is exactly what happened on 8 April 2024, a total solar eclipse became visible as the Moon silently passed directly between the Earth and Sun. When we get a perfect alignment of three celestial bodies like this its called a Syzygy, a wonderful word and great for a game of Scrabble. Totality for this eclipse lasted for about 4 minutes depending on the location of the observer. That’s the chief difference between a solar eclipse and a lunar eclipse. Lunar eclipses are visible anywhere on Earth that the Moon is visible but solar eclipses are only visible from very specific locations on Earth. 

Continue reading
  20 Hits

Could Life Exist in Water Droplet Worlds in Venus’ Atmosphere?

It’s a measure of human ingenuity and curiosity that scientists debate the possibility of life on Venus. They established long ago that Venus’ surface is absolutely hostile to life. But didn’t scientists find a biomarker in the planet’s clouds? Could life exist there, never touching the planet’s sweltering surface?

It seems to depend on who you ask.

We’ll start with phosphine.

Phosphine is a biomarker, and in 2020, researchers reported the detection of phosphine in Venus’ atmosphere. There should be no phosphine because phosphorous should be oxidized in the planet’s atmosphere. According to the paper, no abiotic source could explain the quantity found, about 20 ppb.

Subsequently, the detection was challenged. When others tried to find it, they couldn’t. Also, the original paper’s authors informed everyone of an error in their data processing that could’ve affected the conclusions. Those authors examined the issue again and mostly stood by their original detection.

Cloud structure in the Venusian atmosphere in 2016, revealed by observations in the two ultraviolet bands by the Japanese spacecraft Akatsuki. Image Credit: Kevin M. Gill
This figure from the research shows the temperature and pressure throughout Venus's atmosphere. Image Credit: Image Credit: S. Seager et al. 2021. doi:10.1089/ast.2020.2244
This image shows the cycle of Venusian aerial microbial life. Image Credit: S. Seager et al. 2021. doi:10.1089/ast.2020.2244

Artist's impression of the Rocket Lab Mission to Venus. Credit: Rocket Lab
Continue reading
  22 Hits

Finally, an Explanation for the Moon’s Radically Different Hemispheres

Pink Floyd was wrong, there is no dark side to the Moon. There is however, a far side. The tidal effects between the Earth and Moon have caused this captured or synchronous rotation. The two sides display very different geographical features; the near side with mare and ancient volcanic flows while the far side displaying craters within craters. New research suggests the Moon has turned itself inside out with heavy elements like titanium returning to the surface. It’s now thought that a giant impact on the far side pushed titanium to the surface, creating a thinner more active near side. 

There have been a number of theories for the formation of the Moon; the capture theory and the accretion theory to name two of them. Perhaps the most accepted theory now is the giant impact theory which suggests Earth was struck by a large object, causing a lot of debris to be ejected into orbit. This material eventually coalesced to form the Moon we know and love today. 

In the decades that followed the Apollo missions, scientists studied the rocks returned by the astronauts. The studies revealed that many of the surface rocks contained unexpectedly high concentrations of titanium. More surprisingly was that satellite observations revealed these titanium rich minerals were far more common on the nearside and absent on the far-side. What is known is that the Moon formed fast and hot and would have been covered for a short period in an ocean of molten magma. The magma cooled and solidified forming the Moon’s crust but trapped below was the more dense material including titanium and iron. 

Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA

The dense material should have sunk to greater depths inside the Moon however over the years that followed something strange seems to have happened. The denser material did indeed sink, mixed with mantle but melted and returned to the surface as titanium rich lava flows. Debates have been raging whether this is exactly what happened but a new piece of research by a team at the University of Arizona Lunar and Planetary Laboratory offer more details about the process and how the interior of the Moon evolved.

It has already been suggested that the Moon may have suffered a giant impact on the far side causing the heavier elements to be forced over to the near side but the new study highlighted supporting evidence from gravitational anomalies. The team measured tiny variations in the Moon’s gravitational field from data from the GRAIL mission. GRAIL – or Gravity Recovery and Interior Laboratory – orbited the Moon to create the most accurate gravitational map of the Moon to date. Using GRAIL data the team discovered that titanium-iron oxide minerals had migrated to the near side and sunk to the interior in sheetlike cascades. This was consistent with models suggesting the event occurred more than 4.22 billion years ago. 


Continue reading
  43 Hits

How Much of Venus’s Atmosphere is Coming from Volcanoes?

There’s a lot we don’t know about the planet nearest to us. Venus is shrouded in clouds, making speculation about what’s happening on its surface a parlor game for many planetary scientists for decades. But one idea that always seems to come up in those conversations – volcanoes. It’s clear that Venus has plenty of volcanoes – estimates center around about 85,000 of them in total. However, science is still unclear as to whether there is any active volcanism on Venus or not. A new set of missions to the planet will hopefully shed some light on the topic – and a new paper from researchers from Europe looks at how we might use information from those missions to do so.

The authors break the question of whether there is active volcanism on Venus into two distinct approaches. First, can Venus maintain its current atmospheric composition without adding gases from volcanic sources? Second, is there any evidence for “transient” effects that would only be possible if active volcanoes existed? 

Let’s explore the first approach first. One major data point to consider with this approach is the variability of sulfur dioxide in the atmosphere over periods as long as decades. Some researchers have pointed to this variability as clear evidence of volcanism. Still, some take a more nuanced view and point out that the variability could be caused by unknown surface-atmosphere interactions or even interactions between two layers of the atmosphere itself.

Fraser has a particular interest in Venus – here’s why.

Transient effects in the atmosphere could include any number of features, ranging from water vapor to particulate matter (e.g., volcanic ash). So far, data collected on this has been limited and mainly done with remote sensing missions. However, at least a few of the new missions to Venus will involve taking data as they descend through the atmosphere. 

One of those – DAVINCI – plans to take measurements in situ in the atmosphere. It will come with a couple of spectrometers, inertial measurement units, and high-tech cameras to collect data in the planet’s lower atmosphere. The spectrometers themselves should be able to directly and clearly detect trace volcanic gases in the atmosphere. Ionic concentrations, such as the deuterium/hydrogen ratio, would also indicate ongoing volcanic outgassing.

Continue reading
  35 Hits

US Satellite Photographs a South Korean Satellite from Lunar Orbit

In 2009, NASA launched the Lunar Reconnaissance Orbiter (LRO.) Its ongoing mission is to map the lunar surface in detail, locating potential landing sites, resources, and interesting features like lava tubes. The mission is an ongoing success, another showcase of NASA’s skill. It’s mapped about 98.2% of the lunar surface, excluding the deeply shadowed regions in the polar areas.

But recently, the LRO team’s skill was on display for another reason: it captured images of another satellite speeding over the lunar surface.

The Republic of Korea, or what most of us call South Korea, launched their Danuri lunar orbiter in August 2022. It’s the nation’s first lunar orbiter, and its mission is to develop and test technologies—including the space internet—and make a topographic map of the lunar surface. The map will help select future landing sites and identify resources such as uranium, helium-3, silicon, aluminum, and water ice. Danuri carries a suite of instruments, including a spectrometer, a magnetometer, and different cameras. Significantly, it contains a camera that will allow it to image the shadowed polar regions beyond the LRO’s capabilities.

A rendering of South Korea’s Danuri, Korean Pathfinder Lunar Orbiter (KPLO). Image Credit: Korean Aerospace Research Institute.

NASA contributed to the Korea Aerospace Research Institute’s (KARI) Danuri mission. NASA built the Shadowcam instrument that images the shadowed regions at the lunar poles.

As a sort of high-five to their fellow space-faring nation, the LRO captured images of Danuri as it sped by under the LRO.

Danuri looks like a streak in this LRO image taken 5 km above it. Image Credit: NASA/Goddard/Arizona State University
During the second orbit, the LRO captured this image of Danuri from only 4 km (2.5 miles) above it. The LRO was oriented 25 degrees toward the South Korean orbiter. Image Credit: NASA/Goddard/Arizona State University
In the image on the right, the Danuri pixels are unsmeared. The LRO was 8 km (5 miles) above Danuri when it captured this image. The image is rotated 90 degrees to look like what a person would see if they onboard the LRO and looking out a window. Image Credit: NASA/Goddard/Arizona State University
NASA says Danuri is in the white box near the right-hand corner of the image. If you can see it, you should consider becoming a citizen scientist. For perspective, the crater above the white box is 12 km (7.5 miles) wide. Image Credit: NASA/Goddard/Arizona State University
Danuri captured this image of the LRO when the NASA satellite was 18 km (11 miles) below it. The combined velocity of both spacecraft was 11,000 km/h (7,000 mp/h.) Image Credit: NASA/KARI/Arizona State University
Continue reading
  33 Hits

Here's the Total Solar Eclipse, Seen From Space

On Monday, April 8th, people across North America witnessed a rare celestial event known as a total solar eclipse. This phenomenon occurs when the Moon passes between the Sun and Earth and blocks the face of the Sun for a short period. The eclipse plunged the sky into darkness for people living in the Canadian Maritimes, the American Eastern Seaboard, parts of the Midwest, and northern Mexico. Fortunately for all, geostationary satellites orbiting Earth captured images of the Moon’s shadow as it moved across North America.

One such satellite was the Geostationary Operational Environmental Satellite-16 (GOES-16), part of the Earth observation network jointly run by NASA and the National Oceanic and Atmospheric Administration (NOAA). The GOES-16 (GOES-East) satellite is the first of the series, regularly monitoring space weather and providing continuous imagery and atmospheric measurements of Earth’s western hemisphere. From its orbit at a distance of 36,000 km (~22,370 mi) from Earth, GOES-16 captured the passage of the eclipse across North America from approximately 10:00 A.M. to 05:00 P.M. EST (07:00 A.M. to 02:00 P.M. PST).

Solar eclipses take several forms, which include what many residents in North America witnessed yesterday (i.e., the Moon completely blocking the face of the Sun). There’s also an annual eclipse, which happens when the Moon passes between the Sun and Earth when it is at or near its farthest point from Earth. As a result, the face of the Sun is not completely obscured and is visible as a bright ring in the sky. There’s also a partial eclipse, which happens when the Sun, Moon, and Earth are not perfectly lined up, making the Sun appear crescent-shaped.

There’s also what is known as a hybrid solar eclipse, which can appear to shift between annular and total (due to Earth’s curvature) as the Moon’s shadow moves across the globe. A total eclipse, however, is the rarest of these events, where people located directly in the center of the Moon’s shadow will see only the Sun’s outer atmosphere (the corona). The next total eclipse is not expected to occur until August 12th, 2026, and will be visible to residents in Greenland, Iceland, Spain, Russia, and a small area of Portugal. For people in Europe, Africa, and North America, the same eclipse will appear as a partial one.

The passage of the Moon’s shadow across Earth’s surface is known as the “path of totality.” As the images show, this path spanned across the North American continent from Mexico to the eastern tip of Canada. Aside from GEOS-16, images were also taken by the European Space Agency’s (ESA) Copernicus Sentinel-3 mission using its Sea and Land Surface Temperature Radiometer (SLSTR). This satellite monitors Earth’s oceans, land, glaciers, and atmosphere to monitor and improve our understanding of global weather dynamics.

Continue reading
  32 Hits

If Europa has Geysers, They’re Very Faint

In 2013, the Hubble Space Telescope spotted water vapour on Jupiter’s moon Europa. The vapour was evidence of plumes similar to the ones on Saturn’s moon Enceladus. That, and other compelling evidence, showed that the moon has an ocean. That led to speculation that the ocean could harbour life.

But the ocean is obscured under a thick, global layer of ice, making the plumes our only way of examining the ocean. The plumes are so difficult to detect they haven’t been confirmed.

The lead author of the paper presenting Hubble’s 2013 evidence is Lorenz Roth of Southwest Research Institute. He said, “By far, the simplest explanation for this water vapour is that it erupted from plumes on the surface of Europa. If those plumes are connected with the subsurface water ocean we are confident exists under Europa’s crust, then this means that future investigations can directly investigate the chemical makeup of Europa’s potentially habitable environment without drilling through layers of ice. And that is tremendously exciting.”

It is, but first, scientists have to find the plumes.

“We pushed Hubble to its limits to see this very faint emission. These could be stealth plumes because they might be tenuous and difficult to observe in visible light,” said Joachim Saur of the University of Cologne, co-author of the 2013 paper.

This illustration shows what the interior of Europa might look like. Geysers might erupt through cracks and fissures in the ice. Image Credit: NASA/JPL-Caltech/Michael Carroll)
These are four ALMA images of Europa. The researchers observed the moon on four different days so they could image almost the entire surface. They found no plumes. Image Credit: Cordiner et al. 2024.
Continue reading
  36 Hits

WISPR Team Images Turbulence within Solar Transients for the First Time

NASA’s Parker Solar Probe has been in studying the Sun for the last six years. In 2021 it was hit directly by a coronal mass ejection when it was a mere 10 million kilometres from the solar surface. Luckily it was gathering data and images enabling scientists to piece together an amazing video. The interactions between the solar wind and the coronal mass ejection were measured giving an unprecedented view of the solar corona. 

The Sun is a fascinating object and as our local star, has been the subject of many studies. There are still mysteries though and it was hoping to unravel some of these that the NASA Parker Solar Probe was launched. It was sent on its way by the Delta IV heavy back in 2018 and has flown seven times closer to the Sun than any spacecraft before it. 

Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory

By the time Parker completes its seven year mission it will have completed 24 orbits of the Sun and flown to within 6.2 million kilometres to the visible surface. For this to happen, its going to get very hot so the probe has a 11.4cm thick carbon composite shield to keep its components as cool as possible in the searing 1,377 Celsius temperatures. 

Flying within the Sun’s outer atmosphere, the corona, the probe picked up turbulence inside a coronal mass ejection as it interacted with the solar wind. These events are eruptions of large amounts of highly magnetised and energetic plasma from within the Sun’s corona. When directed toward Earth they can cause magnetic and radio disruptions in many ways from communications to power systems. 

Image of a coronal mass ejection being discharged from the Sun. (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Using the Wide Field Imager for Parker Solar Probe (WISPR) and its prime position inside the solar atmosphere, unprecedented footage was captured (click on this link for the video). The science team from the US Naval Research Laboratory revealed what seemed like turbulent eddies, so called Kelvin-Helmholtz instabilities (KHIs) in one of the images. Turbulent eddy structures like these have been seen in the atmosphere of terrestrial planets. Strong wind shear between upper and lower cloud levels causes thin trains of crescent wave like clouds. 


Continue reading
  32 Hits

What Happens to Solar Systems When Stars Become White Dwarfs?

In a couple billion years, our Sun will be unrecognizable. It will swell up and become a red giant, then shrink again and become a white dwarf. The inner planets aren’t expected to survive all the mayhem these transitions unleash, but what will happen to them? What will happen to the outer planets?

Right now, our Sun is about 4.6 billion years old. It’s firmly in the main sequence now, meaning it’s going about its business fusing hydrogen into helium and releasing energy. But even though it’s about 330,000 times more massive than the Earth, and nearly all of that mass is hydrogen fuel, it will eventually run out.

In another five billion years or so, its vast reservoir of hydrogen will suffer depletion. As it burns through its hydrogen, the Sun will lose mass. As it loses mass, its gravity weakens and can no longer counteract the outward force driven by fusion. A star is a balancing act between the outward expansion of fusion and the inward force of gravity. Eventually, the Sun’s billions-of-years-long balancing act will totter.

With weakened gravity, the Sun will begin to expand and become a red giant.

This illustration shows the current-day Sun at about 4.6 billion years old. In the future, the Sun will expand and become a red giant. Image Credit: By Oona Räisänen (User:Mysid), User:Mrsanitazier. – Vectorized in Inkscape by Mysid on a JPEG by Mrsanitazier (en:Image: Sun Red Giant2.jpg). CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2585107

The Sun will almost certainly consume Mercury and Venus when it becomes a red giant. It will expand and become about 256 times larger than it is now. The inner two planets are too close, and there’s no way they can escape the swelling star. Earth’s fate is less certain. It may be swallowed by the giant Sun, or it may not. But even if it isn’t consumed, it will lose its oceans and atmosphere and become uninhabitable.

An artist's impression of a white dwarf star. The material inside white dwarfs is tightly packed, making them extremely dense. Image credit: Mark Garlick / University of Warwick.
This Hubble Space Telescope shows Sirius, with its white dwarf companion Sirius B to the lower left. Sirius B is the closest white dwarf to the Sun. Credit: NASA, ESA, H. Bond (STScI) and M. Barstow (University of Leicester).
This artist's illustration shows the white dwarf WD J0914+1914 (Not part of this research.) A Neptune-sized planet orbits the white dwarf, and the white dwarf is drawing material away from the planet and forming a debris disk around the star. Image Credit: By ESO/M. Kornmesser - https://www.eso.org/public/images/eso1919a/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=84618722
Continue reading
  61 Hits

A Neutron Star Merged with a Surprisingly Light Black Hole

Galactic collisions, meteor impacts and even stellar mergers are not uncommon events. neutron stars colliding with black holes however are a little more rare, in fact, until now, we have never observed one. The fourth LIGO-Virgo-KAGRA observing detected gravitational waves from a collision between a black hole and neutron star 650 million light years away. The black hole was tiny though with a mass between 2.5 to 4.5 times that of the Sun. 

Neutron stars and black holes have something in common; they are both the remains of a massive star that has reached the end of its life. During the main part of a stars life the inward pull of gravity is balanced by the outward push of the thermonuclear pressure that makes the star shine. The thermonuclear pressure overcomes gravity for low mass stars like the Sun but for more massive stars, gravity wins. The core collapses compressing it into either a neutron star or a black hole (depending on the progenitor star mass) and explodes as a supernova – in the blink of an eye. 

In May 2023, as a result of the fourth observing session of the LIGO-Virgo-KAGRA (Laser Interferometer Gravitational Wave Observatory-Virgo Gravitational Wave Interferometer and Kamioka Gravitational Wave Detector) network, gravitational waves were picked up from a merger event. The signal came from an object 1.2 times the mass of the Sun and another slightly more massive object. Further analysis revealed the likelihood that one was a neutron star and the other a low mass black hole. The latter falls into the so called ‘mass gap’, more massive than the most massive neutron star and less massive than the least massive black hole.

Interactions between objects can generate gravitational waves. Before they were detected back in 2015, stellar mass black holes were typically found through X-ray observations. Neutron stars on the other hand, were usually found with radio observations. Between the two, was the mass gap with objects lacking between three and five solar masses. 

It has been the subject of debate among scientists with the odd object found which fell within the gap, fuelling debate about its existence. The gap has generally been considered to separate the neutron stars from the black holes and items in this mass group have been scarce. This gravitational wave discovery suggests maybe objects in this gap are not so rare after-all. 

Continue reading
  28 Hits

The Seven Most Intriguing Worlds to Search for Advanced Civilizations (So Far)

Sometimes, the easy calculations are the most interesting. A recent paper from Balázs Bradák of Kobe University in Japan is a case in point. In it, he takes an admittedly simplistic approach but comes up with seven known exoplanets that could hold the key to the biggest question of them all – are we alone?

Dr. Bradák starts with a simple premise – there is a chance that life on Earth might have started via panspermia. There is also a case that panspermia was intention – an advanced civilization could theoretically have purposefully sent a biological seed ship to our local solar system to spread life here, essentially from scratch.

With those admittedly very large assumptions in place, Dr. Bradák works out a few characteristics about the planets that could have been the starting point for such a civilization. First, he assumes, as much of the astrobiological community does, that for an advanced civilization to arise on a planet, that planet has to be at least partially covered in an ocean. 

Sun-like stars aren’t the only potential hosts for habitable planets, as Fraser discusses here.

To meet that requirement, the planet has to be both the right size and the right temperature. The two size categories of exoplanets that Dr. Bradák originally selected were “terrestrial” – planets similar to Earth, including so-called “Super-Earths” – and “sub-Neptunes” – planets that are significantly larger than Earth but smaller than the ice giant in the outer fringes of our solar system.

Any such exoplanet also has to be in the habitable zone of its parent star. That alone dramatically narrows the potential field of planetary candidates. For simplicity’s sake, Dr. Bradák also eliminates sub-Neptunes as a potential planetary class. However, one other factor comes into play as well: age.

Continue reading
  22 Hits

What a Swarm of Probes Can Teach Us About Proxima Centauri B

You’ve likely heard of the Breakthrough Starshot (BTS) initiative. BTS aims to send tiny gram-scale, light sail picospacecraft to our neighbour, Proxima Centauri B. In BTS’s scheme, lasers would propel a whole fleet of tiny probes to the potentially water-rich exoplanet.

Now, another company, Space Initiatives Inc., is tackling the idea. NASA has funded them so they can study the idea. What can we expect to learn from the effort?

Proxima b may be a close neighbour in planetary terms. But it’s in a completely different solar system, about four light-years away. That means any probes sent there must travel at relativistic speeds if we want them to arrive in a reasonable amount of time.

That’s why Space Initiatives Inc. proposes such tiny spacecraft. With their small masses, direct lasers can propel them to their destination. That means they must send a swarm of hundreds or even one thousand probes to get valuable scientific results.

This is much different than the architecture that missions usually conform to. Most missions are a single spacecraft, perhaps with a smaller attached probe like the Huygens probe attached to the Cassini spacecraft. How does using a swarm change the mission? What results can we expect?

There are clouds in the ISM near our Solar System. But we don't know much about them, including if our Solar System is in the LIC or if it's leaving it. Image Credit: Interstellar Probe/JHUAPL
An artist's conception of a violent flare erupting from the red dwarf star Proxima Centauri. Such flares can obliterate the atmospheres of nearby planets. Credit: NRAO/S. Dagnello.
Continue reading
  17 Hits

Measuring the Atmospheres of Other Worlds to See if There are Enough Nutrients for Life

Life on Earth depends on six critical elements: Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorous, and Sulfur. These elements are referred to as CHNOPS, and along with several trace micronutrients and liquid water, they’re what life needs.

Scientists are getting a handle on detecting exoplanets that might be warm enough to have liquid water on their surfaces, habitability’s most basic signal. But now, they’re looking to up their game by finding CHNOPS in exoplanet atmospheres.

We’re only at the beginning of understanding how exoplanets could support life. To grow our understanding, we need to understand the availability of CHNOPS in planetary atmospheres.

A new paper examines the issue. It’s titled “Habitability constraints by nutrient availability in atmospheres of rocky exoplanets.” The lead author is Oliver Herbort from the Department of Astrophysics at the University of Vienna and an ARIEL post-doctoral fellow. The paper has been accepted by the International Journal of Astrobiology.

At our current technological level, we’re just beginning to examine exoplanet atmospheres. The JWST is our main tool for the task, and it’s good at it. But the JWST is busy with other tasks. In 2029, the ESA will launch ARIEL, the Atmospheric Remote-sensing Infrared Exoplanet Large survey. ARIEL will be solely focused on exoplanet atmospheres.

This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus by detecting phosphine. Subsequent research disagreed with this finding, but the issue is ongoing. Image Credits: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech
This table from the research illustrates the authors' concept of atmospheric nutrient availability. As the top row shows, without water, no atmosphere is habitable. Different combinations of nutrients have different habitability potential. 'red' stands for redox, and 'ox' stands for the presence of the oxidized state of CO2, NOx, and SO2. Image Credit: Herbort et al. 2024.
Artist's impression of the surface of a hycean world. Hycean worlds are still hypothetical, with large oceans and thick hydrogen-rich atmospheres that trap heat. It's unclear if a world with no surface can support life. Image Credit: University of Cambridge
Continue reading
  19 Hits

Does the Rise of AI Explain the Great Silence in the Universe?

Artificial Intelligence is making its presence felt in thousands of different ways. It helps scientists make sense of vast troves of data; it helps detect financial fraud; it drives our cars; it feeds us music suggestions; its chatbots drive us crazy. And it’s only getting started.

Are we capable of understanding how quickly AI will continue to develop? And if the answer is no, does that constitute the Great Filter?

The Fermi Paradox is the discrepancy between the apparent high likelihood of advanced civilizations existing and the total lack of evidence that they do exist. Many solutions have been proposed for why the discrepancy exists. One of the ideas is the “Great Filter.”

The Great Filter is a hypothesized event or situation that prevents intelligent life from becoming interplanetary and interstellar and even leads to its demise. Think climate change, nuclear war, asteroid strikes, supernova explosions, plagues, or any number of other things from the rogue’s gallery of cataclysmic events.

Or how about the rapid development of AI?

Stephen Hawking was a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. In later years, Hawking recognized that AI could be an extinction-level threat. Credit: educatinghumanity.com
This is a portion of the Carta Marina map from the year 1539. It shows monsters lurking in the unknown waters off of Scandinavia. Are the fears of ASI kind of like this? Or could ASI be the Great Filter? Image Credit: By Olaus Magnus - http://www.npm.ac.uk/rsdas/projects/carta_marina/carta_marina_small.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=558827
Artist's illustration of a SpaceX Starship landing on Mars. If we can become a multi-planetary species, the threat of ASI is diminished. Credit: SpaceX
The Artemis program is a renewed effort to establish a presence on the Moon. After that, we could visit Mars. Are these our first steps to becoming a multi-planetary civilization? Image Credit: NASA
This is the United Nations General Assembly. Are we united enough to constrain AI? Image Credit: By Patrick Gruban, cropped and downsampled by Pine - originally posted to Flickr as UN General Assembly, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4806869
Continue reading
  52 Hits

If We Want to Visit More Asteroids, We Need to Let the Spacecraft Think for Themselves

Missions to asteroids have been on a tear recently. Visits by Rosetta, Osirix-REX, and Hayabusa2 have all visited small bodies and, in some cases, successfully returned samples to the Earth. But as humanity starts reaching out to asteroids, it will run into a significant technical problem – bandwidth. There are tens of thousands of asteroids in our vicinity, some of which could potentially be dangerous. If we launched a mission to collect necessary data about each of them, our interplanetary communication and control infrastructure would be quickly overwhelmed. So why not let our robotic ambassadors do it for themselves – that’s the idea behind a new paper from researchers at the Federal University of São Paulo and Brazil’s National Institute for Space Research.

The paper primarily focuses on the control problem of what to do when a spacecraft is approaching a new asteroid. Current missions take months to approach and require consistent feedback from ground teams to ensure the spacecraft understands the parameters of the asteroid it’s approaching – especially the gravitational constant.

Some missions have seen more success with that than others – for example, Philase, the lander that went along with Rosetta, had trouble when it bounced off the surface of comet 67P/Churyumov-Gerasimenko. As the authors pointed out, part of that difference was a massive discrepancy between the actual shape of the comet and the observed shape that telescopes had seen before Rosetta arrived there. 

Fraser discusses the possibility of capturing an asteroid.

Even more successful missions, such as OSIRIS-Rex, take months of lead-up time to complete relatively trivial maneuvers in the context of millions of kilometers their overall journey takes them. For example, it took 20 days for OSIRIX-Rex to perform multiple flybys at 7 km above the asteroid’s surface before its mission control deemed it safe to enter a stable orbit.

One of the significant constraints the mission controllers were looking at was whether they could accurately calculate the gravitational constant of the asteroid they were visiting. Gravity is notoriously difficult to determine from far away, and its miscalculation led to the problems with Philae. So, can a control scheme do to solve all of these problems?

Continue reading
  20 Hits

Testing a Probe that Could Drill into an Ice World

I remember reading about an audacious mission to endeavour to drill through the surface ice of Europa, drop in a submersible and explore the depths below. Now that concept may be taking a step closer to reality with researchers working on technology to do just that. Worlds like Europa are high on the list for exploration due to their potential to harbour life. If technology like the SLUSH probe (Search for Life Using Submersible Head) work then we are well on the way to realising that dream. 

The search for life has always been something to captivate the mind. Think about the diversity of life on Earth and it is easy to see why we typically envisage creatures that rely upon sunlight, food and drink. But on Earth, life has found a way in the most inhospitable of environments, even at the very bottom of the ocean. The Mariana’s Trench is deeper than Mount Everest is tall and anything that lives there has to cope with cold water, crushingly high pressure and no sunlight. Seems quite alien but even here, life thrives such as the deep-sea crustacean Hirondellea Gigas – catchy name. 

Location of the Mariana Trench. Credit: Wikipedia Commons/Kmusser

Europa, one of the moon’s of Jupiter has an ice crust but this covers over a global ocean of liquid water.  The conditions deep down in the ocean of Europa might not be so very different from those at the bottom of the Mariana’s Trench so it is here that a glimmer of hope exists to find other life in the Solar System. Should it exist, getting to it is the tricky bit. It’s not just on Europa but Enceladus and even Mars may have water underneath ice shelves. Layers of ice up to a kilometre thick might exist so technology like SLUSH has been developed to overcome. 

Natural color image of Europa obtained by NASA’s Juno spacecraft. (Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)

The technology is not too new though since melt probes like SLUSH have been tested before. The idea is beautifully simple.  The thermo-mechanical probe uses a drilling mechanism to break through the ice and then the heat probe to partially melt the ice chips, forming slush to enable their transportation to behind the probe as it descends. 

The probe, which looks rather like a light sabre, is then able to transmit data from the subsurface water back to the lander. A tether system is used for the data transmission using conductive microfilaments and an optical fibre cable. Intriguingly and perhaps even cunningly, should the fibre cable break (which is a possibility due to tidal stresses from the ice) then the microfilaments will work as an antenna.  They can then be tuned into by the lander to resume data transmission. The tether is coiled up and housed inside spools which are left behind in the ice as the spool is emptied. I must confess my immediate thought here was ‘litter’! I accept we have to leave probes in order to explore but surely we can do it without leaving litter behind! However there is a reason for this too. As the spools are deployed, they act as receivers and transmitters to allow the radio frequencies to travel through the ice. 


Continue reading
  20 Hits

What Could We Build With Lunar Regolith?

It has often been likened to talcum powder. The ultra fine lunar surface material known as the regolith is crushed volcanic rock. For visitors to the surface of the Moon it can be a health hazard, causing wear and tear on astronauts and their equipment, but it has potential. The fine material may be suitable for building roads, landing pads and shelters. Researchers are now working to analyse its suitability for a number of different applications.

Back in the summer of 1969, Armstrong and Aldrin became the first visitors from Earth to set foot on the Moon. Now, 55 years on and their footprints are still there. The lack of weathering effects and the fine powdery material have held the footprints in perfect shape since the day they were formed. Once we – and I believe this will happen – establish lunar bases and even holidays to the Moon those footprints are likely still going to be there. 

There are many challenges to setting up permanent basis on the Moon, least of which is getting all the material there. I’ve been embarking on a fairly substantial home renovation over recent years and even getting bags of cement and blocks to site has proved a challenge. Whilst I live in South Norfolk in UK (which isn’t the easiest place to get to I accept) the Moon is even harder to get to. Transporting all the necessary materials over a quarter of a million kilometres of empty space is not going to be easy. Teams of engineers and scientists are looking at what materials can be acquired on site instead of transporting from Earth. 

The fine regolith has been getting a lot of attention for this very purpose and to that end, mineralogist Steven Jacobsen from the Northwestern University has been funded by NASAs Marshall Space Flight Centre to see what it back be used for. In addition NASA has partnered with ICON Technology, a robotics firm to explore lunar building technologies using resources found on the Moon. A key challenge with the lunar regolith though is that samples can vary considerably depending on where they are collected from. Jacobsen is trying to understand this to maximise construction potential. 

ICON were awarded the $57.2 million grant back in November 2022 to develop lunar construction methods. Work had already begun on space based construction, again from ICON in their Project Olympus. This didn’t just focus on the Moon though, Mars was also part of the vision to create construction techniques that could work wherever they were employed. 

Continue reading
  15 Hits

The World's Largest Digital Camera is Complete. It Will Go Into the Vera Rubin Observatory

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), was formally proposed in 2001 to create an astronomical facility that could conduct deep-sky surveys using the latest technology. This includes a wide-field reflecting telescope with an 8.4-meter (~27.5-foot) primary mirror that relies on a novel three-mirror design (the Simonyi Survey Telescope) and a 3.2-megapixel Charge-Coupled Device (CCD) imaging camera (the LSST Camera). Once complete, Rubin will perform a 10-year survey of the southern sky known as the Legacy Survey of Space and Time (LSST).

While construction on the observatory itself did not begin until 2015, work began on the telescope’s digital cameras and primary mirror much sooner (in 2004 and 2007, respectively). After two decades of work, scientists and engineers at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory and their collaborators announced the completion of the LSST Camera – the largest digital camera ever constructed. Once mounted on the Simonyi Survey Telescope, this camera will help researchers observe our Universe in unprecedented detail.

The Vera C. Rubin Observatory is jointly funded by the U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) and is cooperatively operated by NSF NOIRLab and SLAC. When Rubin begins its ten-year survey (scheduled for August 2025), it will help address some of the most pressing and enduring questions in astronomy and cosmology. These include understanding the nature of Dark Matter and Dark Energy, creating an inventory of the Solar System, mapping the Milky Way, and exploring the transient optical sky (i.e., objects that vary in location and brightness).

A schematic of the LSST Camera. Note the size comparison; the camera will be the size of a small SUV. Credit: Vera Rubin Observatory/DOE

The LSST Camera will assist these efforts by gathering an estimated 5,000 terabytes of new raw images and data annually. “With the completion of the unique LSST Camera at SLAC and its imminent integration with the rest of Rubin Observatory systems in Chile, we will soon start producing the greatest movie of all time and the most informative map of the night sky ever assembled,” said Željko Ivezic, an astronomy professor at the University of Washington and the Director of Rubin Observatory Construction in a NoirLab press release.

Continue reading
  15 Hits

The First Atmospheric Rainbow on an Exoplanet?

When light strikes the atmosphere all sorts of interesting things can happen. Water vapor can split sunlight into a rainbow arc of colors, corpuscular rays can stream through gaps in clouds like the light from heaven, and halos and sundogs can appear due to sunlight reflecting off ice crystals. And then there is the glory effect, which can create a colorful almost saint-like halo around objects.

Like rainbows, glories are seen when facing away from the light source. They are often confused with circular rainbows because of their similarity, but glories are a unique effect. Rainbows are caused by the refraction of light through water droplets, while glories are caused by the wave interference of light. Because of this, a glory is most apparent when the water droplets of a cloud or fog are small and uniform in size. The appearance of a glory gives us information about the atmosphere. We have assumed that some distant exoplanets would experience glories similar to Earth, but now astronomers have found the first evidence of them.

A solar glory seen from an airplane. Credit: Brocken Inaglory

The observations come from the Characterising ExOplanet Satellite (Cheops) as well as observations from other observatories of an exoplanet known as WASP-76b. It’s not the kind of exoplanet where you’d expect a glory to appear. WASP-76b is not a temperate Earth-like world with a humid atmosphere, but a hellish hot Jupiter with a surface temperature of about 2,500 Kelvin. Because of this, the team wasn’t looking for extraterrestrial glories but rather studying the odd asymmetry of the planet’s atmosphere.

WASP-76b orbits its star at a tenth of the distance of Mercury from the Sun. At such a close distance the world is likely tidally locked, with one side forever boiling under its sun’s heat and the other side always in shadow. No such planet exists in our solar system, so astronomers are eager to study how this would affect the atmosphere of such a world. Previous studies have shown that the atmosphere is not symmetrical. The star-facing side is puffed up by the immense heat, while the atmosphere of the dark side is more dense.

For three years the team observed WASP-76b as it passed in front of and behind its star, capturing data on the intersection between the light and dark side. They found that on the planet’s eastern terminator (the boundary between light and dark sides) there was a surprising increase in light. This extra glow could be caused by a glory effect. It will take more observations to confirm this effect but if verified it will be the first glory observed beyond our solar system. Currently, glories have only been observed on Earth and Venus.

Continue reading
  14 Hits

Roman Will Learn the Ages of Hundreds of Thousands of Stars

Astronomers routinely provide the ages of the stars they study. But the methods of measuring ages aren’t 100% accurate. Measuring the ages of distant stars is a difficult task.

The Nancy Grace Roman Space Telescope should make some progress.

Stars like our Sun settle into their main sequence lives of fusion and change very little for billions of years. It’s like watching middle-aged adults go about their business during their working lives. They get up, drive to work, sit at a desk, then drive home.

But what can change over time is their rotation rate. The Sun now rotates about once a month. When it was first formed, it rotated more rapidly.

But over time, the Sun’s rotation rate, and the rotation rate of stars the same mass or lower than the Sun’s, will slow down. The slowdown is caused by interactions between the star’s magnetic fields and the stellar wind, the stream of high-energy protons and electrons emitted by stars. Over time, these interactions reduce a star’s angular momentum, and its rotation slows. The phenomenon is called “magnetic braking,” and it depends on the strength of a star’s magnetic fields.

This is a simulated image of what the Roman Space Telescope will see when it surveys the Milky Way's galactic bulge. The telescope will observe hundreds of millions of stars in the region. Image Credit: Matthew Penny (Louisiana State University)
Artist's impression of the Nancy Grace Roman Space Telescope, named after NASA's first Chief of Astronomy. When launched later this decade, the telescope will measure the rotational periods of hundreds of thousands of stars and, with the help of AI, will determine their ages. Credits: NASA
Continue reading
  13 Hits

SpaceZE.com