Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

What would happen if the moon disappeared?

What would happen if our closest neighbor, the moon, disappeared? Here we explore the possible effects it could have on the environment and life on Earth.

Horsehead Nebula rears its head in gorgeous new James Webb Space Telescope images (video)

The James Webb Telescope has zoomed in on the Horsehead Nebula, capturing slices of this stunning star-forming region close to Earth in an entirely new light.

China to launch sample-return mission to the moon's far side on May 3

China reportedly plans to launch its Chang'e 6 sample-return mission toward the moon's mysterious far side on Friday (May 3).

Boeing Starliner astronauts conduct dress rehearsal ahead of May 6 launch (photos, video)

Boeing Starliner's 1st astronaut crew continues their training, even in quarantine. After finishing a big dress rehearsal on April 26, practice continues ahead of the scheduled May 6 launch to the ISS.

A Cosmic Arrow Pierced Pluto's Heart — Is It Still There Beneath the Surface?

A giant impact likely formed Pluto's heart-shaped basin, Sputnik Planitia. A big chunk of the impactor’s core might still be buried under the ice.

The post A Cosmic Arrow Pierced Pluto's Heart — Is It Still There Beneath the Surface? appeared first on Sky & Telescope.

Meet the crew launching on Boeing's 1st Starliner astronaut flight

NASA astronauts Barry "Butch" Wilmore and Suni Williams are slated to launch on Boeing’s first crewed test flight of its Starliner capsule, flying to the International Space Station on May 6.

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study a well-known extrasolar system called PDS 70. The goal? To test the interferometry mode and see how it performs when observing a complex target.

The mode uses the telescope’s NIRISS (Near Infrared Imager and Slitless Spectrograph) as an interferometer. It’s called Aperture Masking Interferometry (AMI) and it allows the JWST to reach its highest level of spatial resolution.

A team of astronomers used the JWST’s AMI to observe the PDS 70 system. PDS 70 is a young T-Tauri star about 5.4 million years old. At that young age, its protoplanetary disk still surrounds it. PDS 70 is a well-studied system that’s caught the attention of astronomers. It’s unique because its two planets, PDS 70 b and c, make it the only multiplanet protoplanetary disk system we know of.

The researchers wanted to determine how easily the AMI would find PDS 70’s two known planets and what else it could observe in the system.

Their research is “The James Webb Interferometer: Space-based interferometric detections of PDS 70 b and c at 4.8 µm.” It’s available on the pre-print site arxiv.org and hasn’t been peer-reviewed yet. The lead author is Dori Blakely from the Department of Physics and Astronomy at the University of Victoria, BC, Canada.

These images are from previous research that used the JWST but not its interferometry mode. The top row is from the telescope's F187N filter, and the bottom row is from the telescope's F480M filter. The left column shows the complete images. The middle column shows the system with the disk subtracted. The right column shows the system with the disk and both known planets extracted. What remains is a potential third planet, planet "d," and an arm-like feature and potential accretion stream. Image Credit: V. Christiaens et al. 2024.
Continue reading

'Flash Gordon' returns to escape from a prison planet in new comic series

A preview of Mad Cave Studios' new "Flash Gordon" comic book series coming in July.

'Tiger stripes' on Saturn's moon Enceladus could reveal if its oceans are habitable

A new model of Enceladus "tiger stripe" fractures and their connection with the moon of Saturn's ice geysers and subsurface oceans could have implications for its ability to support life.

Astronomers finally know why stars born from the same cloud aren't identical twins

Astronomers finally know why giant binary stars born from the same collapsing cloud of gas and dust can be "non-identical twins" with different characteristics and planetary systems.

A Cold Brown Dwarf is Belching Methane Into Space

Brown dwarfs span the line between planets and stars. By definition, a star must be massive enough for hydrogen fusion to occur within its core. This puts the minimum mass of a star around 80 Jupiters. Planets, even large gas giants like Jupiter, only produce heat through gravitational collapse or radioactive decay, which is true for worlds up to about 13 Jovian masses. Above that, deuterium can undergo fusion. Brown dwarfs lay between these two extremes. The smallest brown dwarfs resemble gas planets with surface temperatures similar to Jupiter. The largest brown dwarfs have surface temperatures around 3,000 K and look essentially like stars.

Because of this, it can be difficult to study brown dwarfs, particularly ones that don’t orbit other stars. Without much reflected or emitted light, we can’t easily analyze their spectra to determine their composition. Fortunately, some brown dwarfs do emit radio light thanks to their strong magnetic fields.

Planets such as Earth and Jupiter have strong magnetic fields, and this means they can trap ionized particles such as hydrogen. These charged particles then spiral along the magnetic field lines until they collide with the planet’s upper atmosphere, generating glowing aurora. On Earth, we see them as the Northern Lights. For brown dwarfs, we can’t see the visible light of their aurora, but we can detect their radio glow.

Recently a team looked at the auroral light from a brown dwarf known as W1935. It is a cold brown dwarf 47 light-years from Earth with a surface temperature of just 200 °C. Within the spectra the team found light emissions from methane. While the presence of methane was expected in cold brown dwarfs, the fact that the methane emitted light was not. This means the atmosphere of W1935 likely has a thermal inversion, where the upper atmosphere is warmer than the lower layers.

This is true for the atmosphere of Earth but is driven by solar radiance. W1935 doesn’t orbit a star, so how can its upper atmosphere get so warm? One possible explanation is that the brown dwarf has an undetected small companion. This companion could be ejecting material similar to the way Saturn’s moon Enceleadus ejects water vapor. Once ionized in the vacuum of space, it would become trapped by the magnetic fields of W1935, eventually colliding with the brown dwarf’s upper atmosphere and giving it a bit of thermal heating.

Continue reading

Measuring Exoplanetary Magnetospheres with the Square Kilometer Array

Life on Earth would not be possible without food, water, light, a breathable atmosphere and surprisingly, a magnetic field. Without it, Earth, and its inhabitants would be subjected to the harmful radiation from space making life here, impossible. If we find exoplanets with similar magnetospheres then those worlds may well be habitable. The Square Kilometer Array (SKA) which is still under construction should be able to detect such magnetospheres from radio emissions giving us real insight into our exoplanet cousins. 

The magnetic field of Earth is the result of churning motion of liquid iron and nickel in the outer core. The resultant magnetic field has properties of a giant magnet with a north pole and a south pole and it extends from the core outward, enveloping the entire planet.  The presence of the field stops harmful solar radiation and cosmic particles. Magnetic fields are not static though and it is not uncommon for them to flip, as has happened to our own magnetic field. 

Since we have been hunting exoplanets (and to date, over 5,000 have been discovered) it has become clear that there are a good number of super sized gas gas giants. As our detection technology and methods improve, smaller, more Earth like planets are starting to be discovered. It is therefore not unreasonable to think that, among them, there may well be alien planets with magnetic fields making them, therefore good candidates for habitable environments. 

Artist impression of glory on exoplanet WASP-76b. Credit: ESA

Understanding exoplanet magnetic fields is in its infancy. So far, we have only explored magnetic fields around the planets in our Solar System. What we do know is that any planetary magnetic field emits radio signals due to the Electron Cyclotron Maser Instability mechanism. Sounds like something out of StarTrek or StarWars depending on your preference but either way, electromagnetic radiation is amplified by electrons that are trapped in the field. It is this amplified radiation that can be detected remotely IF we have a radio telescope with the capability. 

A recent paper authored by Fatemeh Bagheri and team from the University of Texas explores whether it might be possible to detect the emissions using the Square Kilometre Array. The concept of the SKA is a radio interferometer with components in Australia and Africa and its headquarters in the UK. The international array of radio telescopes that are joined together electronically to operate as one collecting area of a square kilometre. It affords the ability to study the radio sky with higher sensitivity and resolution than ever before and it’s this, that Bagheri and team are focusing their attention. 


Continue reading

Two new satellites join the Galileo constellation

The European Galileo navigation system has two more satellites in orbit following their launch in the early morning of Sunday, 28 April, at 01:34 BST/02:34 CEST. With 30 satellites now in orbit, Galileo is expanding its constellation, increasing the reliability, robustness and, ultimately, the precision, benefiting billions of users worldwide.

Webb captures iconic Horsehead Nebula in unprecedented detail

Image:

The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. The observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.

The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material that is harder to erode. Astronomers estimate that the Horsehead has about five million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

Read more about the new Webb observations

This image showcases three views of the Horsehead Nebula, which resides in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, roughly 1300 light-years away.

The first image (left), released in November 2023, features the Horsehead Nebula as seen by ESA’s Euclid telescope. Euclid captured this image of the Horsehead in about one hour, which showcases the mission's ability to very quickly image an unprecedented area of the sky in high detail. You can learn more about this image here.

Continue reading

Psyche is Still Sending Data Home at Broadband Speeds

When I heard about this I felt an amused twinge of envy. Over the last year I have been using an unimpressive 4G broadband service and at best get 20 Mbps, NASA’s Psyche mission has STILL been getting 23 Mbps at 225 million km away! It’s all thanks to the prototype optical transmission system employed on the probe. It means it can get up to 100 times more data transmission rate than usual radio. 

NASA’s Pysche mission is on its way to explore the metal rich asteroid between the orbits of Mars and Jupiter called, not surprisingly Psyche. The intriguing thing about the asteroid is that it seems to be the iron rich core of an unformed planet. The spacecraft carried a wealth of scientific instruments to explore the asteroid including an imaging rig, gamma ray and neutron spectrometer, magnetometer and an X-band Gravity platform. 

It began its two year journey on 13 October with its destination, a tiny world that may help us unravel some of the mysteries of the formation of our Solar System. The theory that Psyche is a failed planetary core is not certain so this will be one of the first of its mission objectives; is it simply unmelted metal or was it a core. In order to understand this it’s necessary to work out its age. Secondary to the origin, other objectives are to explore the composition and its topography across the surface. 

Asteroid Psuche was discovered in March 1852 by Italian astronomer Annibale de Gasparis. Because he discovered it, he was allowed to name it and settled on Psyche after the Greek goddess of the soul. It orbits the Sun at a distance of between 378 million to 497 million kilometres and takes about 5 Earth years to complete an orbit. Shaped like a potato, or perhaps more accurately classed as ‘irregular’ it is actually a little ellipsoid in shape measuring 280 km across wide at its widest part and 232 km across long. 

Illustration of the metallic asteroid Psyche. Credit: Peter Rubin/NASA/JPL-Caltech/ASU

Of more interest than the objectives perhaps (although I for one am looking forward to learn more about this wonderful asteroid) was the trial communication system. The newly developed Deep Space Optical Communications technology (DSOC) is not the primary communications platform but it is there as a prototype. 

Continue reading

Live coverage: SpaceX to launch 23 Starlink satellites on Falcon 9 flight from Cape Canaveral

A Falcon 9 stands ready for a Starlink mission at Cape Canaveral’s pad 40. File photo: Adam Bernstein/Spaceflight Now.

Following the historic launch of a pair of the European Commission’s Galileo satellites, SpaceX is preparing to launch another batch of its own Starlink high-speed internet satellites. The Sunday evening Falcon 9 launch will mark the 29th dedicated launch of Starlink satellites in 2024.

Liftoff of the Starlink 6-54 mission from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station (CCSFS) is set for 6:08 p.m. EDT (2208 UTC). If needed, SpaceX has backup opportunities until 9:50 p.m. EDT (0150 UTC).

Spaceflight Now will have live coverage beginning about an hour prior to liftoff.

The Falcon 9 first stage booster supporting this mission, tail number B1076 in the SpaceX fleet, will be launching for a 13th time. It previously supported the launches of Ovzon 3, Intelsat IS-40e, SpaceX’s 26th Commercial Resupply Services (CRS-26) flight and six Starlink missions.

A little more than eight minutes after liftoff, B1076 will land on the SpaceX droneship, ‘Just Read the Instructions.’ This will be the 80th landing on JRTI and the 301st booster landing to date.

🛰
🇫🇲
❤
Continue reading

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history in space. Astronauts replaced the gyros during the last servicing mission in 2009, bringing it back up to six (three with three spares), but they only last so long. Last week, HST went into safe mode because one of the gyros experienced fluctuations in power. NASA paused the telescope’s science operations today to investigate the fluctuations and perhaps come up with a fix.

With this one gyro experiencing problems, only two of the gyros remain fully operational. HST works best with three gyros, and so engineers are working to understand the issue and hopefully figure out a way to fix it remotely. However, several years ago, engineers figured out a way to still conduct science operations with only a single gyro.

HST entered safe mode on April 23, 2024 when the one gyro sent faulty readings. This particular gyro also caused Hubble to enter safe mode last November after returning similar faulty readings. The gyroscopes are part of Hubble’s Pointing Control System, which includes three Fine Guidance Sensors, reaction wheels and the gyros. This allows Hubble to track stars with incredible accuracy, helping the telescope find its way as it scans the heavens, as well as keep Hubble locked onto to its targets.

To work correctly, Hubble must be able to stay focused on a target without deviating more than 7/1000th of an arcsecond, or about the width of a human hair seen at a distance of a mile.

Hubble team created a contingency plan in preparation for a time when the spacecraft might find itself with less than three working gyros again. The team developed a two-gyro mode that substitutes other sensors for one missing gyro. Although less efficient, two-gyro mode allows Hubble to continue collecting ground-breaking science data.


Continue reading

Mars exploration, new rockets and more: Interview with ESA chief Josef Aschbacher

Space.com caught up with ESA Director General Josef Aschbacher recently to talk about Europe's space plans and priorities going forward.

Everything we know about James Gunn's Superman

James Gunn's Superman reboot kicks off the DC Extended Universe's refresh in 2025.

Sneak peek: Browncoats grab victory in Boom! Studios' upcoming 'Firefly: 'Verses' comic (exclusive)

A sneak peek at Boom! Studios' upcoming "What If?" one-shot, "Firefly: 'Verses."


SpaceZE.com