Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

Astrophotographer captures the Running Chicken Nebula in impeccable detail

Check out this incredibly detailed image of the Running Chicken Nebula — IC 2944 — captured by astrophotographer Rod Prazeres.

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside Earth. It forms the magnetosphere, a region dominated by the magnetic field. Without that planetary protection shield, we’d experience harmful cosmic radiation and charged particles from the Sun.

Has Earth always had this deflector shield? Probably so, and the evidence is in old rocks. A team of researchers at University of Oxford and MIT found the earliest evidence for its existence in stones found along the coast of Greenland in a region called the Isua Supercrustal Belt.

Geologists have long known that iron particles in rocks “entrain” a print of the magnetic field that was in place when they formed. So, the research team uncovered rocks that formed some 3.7 billion years ago. It’s not an easy task, according to team lead Claire Nichols of the Department of Earth Sciences at Oxford. “Extracting reliable records from rocks this old is extremely challenging,” Nichols pointed out. “It was really exciting to see primary magnetic signals begin to emerge when we analyzed these samples in the lab. This is a really important step forward as we try and determine the role of the ancient magnetic field when life on Earth was first emerging.”

This 3.7-billion-year-old rock from Greenland. Entrained magnetic field fingerprints help scientists determine that our magnetosphere and magnetic field existed when this rock formed. Courtesy: Claire Nichols.

The team’s samples recorded a magnetic field strength of 15 microteslas at the time they formed. Today, Earth’s field strength is closer to 30 microteslas, so it’s obvious that our magnetic field and magnetosphere have been there for billions of years. It’s also clear that the field changes over time. The science team also found that early Earth’s magnetosphere was amazingly similar to the one it has today.

This cutaway of planet Earth shows the familiar exterior of air, water and land as well as the interior: from the mantle down to the outer and inner cores. Currents in hot, liquid iron-nickel in the outer core create our planet's protective but fluctuating magnetic field and magnetosphere. Credit: Kelvinsong / Wikipedia
Lava cooling after an eruption. This rock has an entrained magnetic field fingerprint from the time it formed. Credit: kalapanaculturaltours.com
Continue reading

What Happens After a Supernova Blows? Watch and Find Out

New time-lapse videos from the Chandra X-ray Observatory show the Crab Nebula and the Cassiopeia A supernova remnant over more than 20 years.

The post What Happens After a Supernova Blows? Watch and Find Out appeared first on Sky & Telescope.

China unveils video of its moon base plans, which weirdly includes a NASA space shuttle

A video outlining China's moon base plans depicts a wide number of concepts, including surface sample return operations, a lander and rover, and supporting orbital satellites.

Astronomers Think They’ve Found Examples of the First Stars in the Universe

When the first stars in the Universe formed, the only material available was primordial hydrogen and helium from the Big Bang. Astronomers call these original stars Population Three stars, and they were extremely massive, luminous, and hot stars. They’re gone now, and in fact, their existence is hypothetical.

But if they did exist, they should’ve left their fingerprints on nearby gas, and astrophysicists are looking for it.

The hunt for the Universe’s Population 3 (Pop III) stars is important in astrophysics. They were the first to form astronomical metals, elements heavier than hydrogen and helium. Only once these metals were available could rocky planets form. Their metals also fed into the next generation of stars, leading to the higher metallicity we observe in stars like our Sun.

Since Pop III stars were so massive and hot, they didn’t last long. None would have survived to this day. But the powerful JWST can expand the search for these crucial stars by looking back in time for their ancient light. That’s what the JWST-JADES (James Webb Space Telescope Advanced Deep Extragalactic Survey) is all about.

Researchers working with JADES data have found tantalizing evidence of Pop III stars in GN-z11, a high-redshift galaxy that’s one of the furthest galaxies from Earth ever observed. Their findings are in the paper “JWST-JADES. Possible Population III signatures at z=10.6 in the halo of GN-z11.” The lead author is Roberto Maiolino, a professor of Experimental Astrophysics at the Cavendish Laboratory (Department of Physics) and the Kavli Institute for Cosmology at the University of Cambridge. The research will be published in the journal Astronomy and Astrophysics.

This figure from the research shows the detection of different emissions. The red star in the top images indicates the position of the continuum of GN-z11. The bottom row shows the lines mapped onto a JWST NIRCam image. The 'fewer exposures' on the top row indicates a lack of exposures in the upper portions of the panels due to a telescope-pointing error. Image Credit: Maiolino et al. 2024.
This figure from the research shows the spectra of the HeII clump. The observed emissions (blue) line up with the expected emissions from a galaxy at redshift z=10.600. Image Credit: Maiolino et al. 2024.
Continue reading

NASA's TESS exoplanet hunter may have spotted its 1st rogue planet

NASA's exoplanet hunter TESS may have detected its first free-floating planet with a little help from Einstein.

This spacecraft is headed to NASA's asteroid-crash aftermath — but first, it'll stop by Mars

During a gravity assist with Mars, Hera will study the moon Deimos.

China's Shenzhou 17 astronauts return to Earth after 6 months in space (video)

China's Shenzhou 17 astronauts touched down safely this morning (April 30), bringing their six-month mission to a successful close.

'Star Wars: Obi-Wan Kenobi' and 'Andor' blast onto 4K Ultra HD and Blu-ray today

Disney+ Star Wars series "Obi-Wan Kenobi" and "Andor" land on home video starting April 30 in both 4K Ultra HD and Blu-ray steelbook formats.

Space threats, NORAD upgrade may spur new private defense spending in Canada

The United States and Canada aim to upgrade NORAD to deal with emergent space threats from nations like China or Russia. Canada will hold an industry day May 1 to gather more ideas.

SpaceX vet's startup Portal Space Systems comes out of stealth mode

Portal has developed a new satellite bus called Supernova that the company says will allow unprecedented mobility in Earth orbit and beyond.

Smiles all round: Vega-C to launch ESA solar wind mission

ESA ensures a ride into space for its Smile mission, with Arianespace signing up to launch the spacecraft on a Vega-C rocket

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night sky in X-rays. The first image from the probe that explores the Universe in these energetic wavelengths has just been released. It shows Puppis A, the supernova remnant from a massive star that exploded 4,000 years ago. The image showed the expanding cloud of ejecta from the explosion but now, Einstein will continue to scan the skies for other X-ray events. 

The Chinese and European probe was designed to revolutionise our understanding of the Universe in X-rays. Named after none other than Albert Einstein, it houses cutting edge technology that will enable the observation of black holes, neutron stars and other events and phenomena emitting X-ray radiation. To achieve this it has two science instruments on board; the Wide-field X-ray Telescope (WXT) to give large field views of the sky and the Follow-up X-ray Telescope (FXT) which homes in on objects of interest identified by WXT.

The Einstein probe has three main questions it hopes to address focusing on black holes, gravity waves and supernovae. The recent image just released shows the stunning Puppis A supernova remnant. Supernova are a common process that takes place at the end of a massive star’s life. A star like the Sun is fusing hydrogen in its core into helium. The process is known as thermonuclear fusion and it releases heat, light and an outward pressure known as the thermonuclear force. While a star is stable, the thermonuclear force balances the force of gravity which is trying to collapse the star. 

Massive stars will continue fusing different elements in the core until an iron core remains. It’s not possible to fuse iron so the thermonuclear force ceases allowing gravity to win. the core collapses and the inward rushing material crashes down onto the core and rebounds into a massive explosion known as a supernova. 

Puppis A is one such object that is thought to have exploded 4,000 years ago. It lies about 7,000 light years from us which means the light that the radiation detected by the Einstein probe left about 7,000 years ago. 

Continue reading

Evidence for Planet 9 found in icy bodies sneaking past Neptune

The hypothetical ninth planet may be slingshotting Oort Cloud objects onto orbits that come closer to the sun than Neptune does.

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Our own Galaxy, the Milky Way is a spiral galaxy with a central nucleus and spiral arms emanating out from the centre. Our Solar System lies about 25,000 light years from the centre. Look at the galaxies in the sky though and you will see a real mix but generally they fall under the four main categories. Edwin Hubble tried to bring some structure to the different shapes by developing his galaxy classification scheme to articulate not only the shape but also the sub categories within them. 

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It has been known for some time that galaxies aren’t static. They move and they evolve and change. Spiral galaxies for example, as they age, they often develop a bar feature. The bar joins up the spiral arms instead of a nucleus connecting them and it is believed they are temporary, forming when a build of gas creates a burst of star formation. 

The existence of a bar in a spiral galaxy suggests that the galaxy is fairly stable. Understanding just how the bar feature forms is key to understanding the evolutionary process of the galaxy itself. All previous observations showed that the appearance of the bar significantly reduces from the nearby Universe to redshifts near a value of one. This tells us that the bar seemed to be a modern feature and not present in the early Universe. 

The barred spiral galaxy NGC 1300. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

In a new paper by lead author Zoe A Le Conte, observations from the more sensitive James Webb Space Telescope report that galaxies to greater redshift are studied for bar features. Data is used from the Cosmic Evolution Early Release Science Survey and the observations from the Public Release Imaging for Extragalactic Research studies. Only the galaxies that also appear in the Cosmic Assembly Near Infra Red Deep Extragalactic Legacy Survey are used giving a sample of 368 face on galaxies. 


Continue reading

NASA crew announced for simulated Mars mission next month

NASA picked a crew of four volunteers to undergo a simulation of life on Mars. The project will begin on May 10.

NASA's Viper moon rover gets its 'neck' and 'head' installed for mission later this year

With its "mighty mast," NASA's Polar Exploration Rover dubbed VIPER continues to be prepped for its mission to the moon slated for late 2024.

China releases world's most detailed moon atlas (video)

The atlas, which is available in Chinese and English, depicts the surface of the moon with a scale of 1:2.5 million. It highlights many intriguing geological features, such as impact craters.

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.

Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.

In mathematics, knot theory is the study of closed curves in three dimensions. Think of it as looking at a knotted necklace or a tangle of fishing line, and figuring out how to untangle them in the most efficient manner.

In the same way, a spacecraft’s path could be computed in a crowded planetary system – around Jupiter and all its moons, for example – where the best, simplest and least tangled route could be computed mathematically.

A graphic showing the orbital path the Danuri Lunar Pathfinder spacecraft will take to go into orbit around the Moon. Credit: Korea Aerospace Research Institute (KARI)

According to a new paper in the journal Astrodynamics, “Applications of knot theory to the detection of heteroclinic connections between quasi-periodic orbits,” using knot theory to untangle complicated spacecraft routes would decrease the amount of computer power or just plain guesswork in plotting out changes in spacecraft orbits.


Continue reading

Another New Molecule Discovered Forming in Space

The list of chemicals found in space is growing longer and longer. Astronomers have found amino acids and other building blocks of life on comets, asteroids, and even floating freely in space. Now, researchers have found another complex chemical to add to the list.

The new chemical is known as 2-methoxyethanol (CH3OCH2CH2OH). It’s one of several methoxy molecules that scientists have found in space. But with 13 atoms, it’s one of the largest and most complex ones ever detected.

A team of scientists called the McGuire Group specializes in detecting chemicals in space. The McGuire Group and other researchers from institutions in Florida and France worked together to find 2-methoxyethanol.

The researchers published their findings in The Astrophysical Journal Letters. It’s titled “Rotational Spectrum and First Interstellar Detection of 2-methoxyethanol Using ALMA Observations of NGC 6334I.” The lead author is Zachary Fried, a graduate student in the McGuire Group at MIT.

A ball and stick model of 2-methoxyethanol (CH3OCH2CH2OH). With 13 atoms, it’s one of the largest complex chemicals ever found in space. Image Credit: By Ben Mills – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3081683

“There are a number of ‘methoxy’ molecules in space, like dimethyl ether, methoxymethanol, ethyl methyl ether, and methyl formate, but 2-methoxyethanol would be the largest and most complex ever seen,” said lead author Fried.

NGC 6334m the Cat's Paw Nebula. Image Credit: ESO
IRAS 16293?2422 in the star-forming region Rho Ophiuchi. Image Credit: ESO
Continue reading

SpaceZE.com