Astronomers have begun using a sophisticated suite of simulations, an advanced machine learning model of the formation of galaxy clusters, and an exotic relationship between galaxies to understand the origins of dark matter and dark energy.
Space News & Blog Articles
Future historians might look back on this time and call it the ‘exoplanet age.’ We’ve found over 5,000 exoplanets, and we’ll keep finding more. Next, we’ll move beyond just finding them, and we’ll turn our efforts to finding biosignatures, the special chemical fingerprints that living processes imprint on exoplanet atmospheres.
NASA’s Psyche mission is back on track for launch and is now scheduled for a potential October 2023 launch date, according to an October 2022 statement from NASA. This comes after missing its originally planned launch date between August and October of 2022, and becoming subject to an independent review board, whose results were announced in November 2022.
In the coming years, NASA and the European Space Agency (ESA) will send two robotic missions to explore Jupiter’s icy moon Europa. These are none other than NASA’s Europa Clipper and the ESA’s Jupiter Icy Moons Explorer (JUICE), which will launch in 2024, and 2023 (respectively). Once they arrive by the 2030s, they will study Europa’s surface with a series of flybys to determine if its interior ocean could support life. These will be the first astrobiology missions to an icy moon in the outer Solar System, collectively known as “Ocean Worlds.”
The otherwise unremarkable double asteroid of Didymos and Dimorphos made headlines as the target of NASA’s successful Double Asteroid Redirect Test (DART) mission. With new details about the system emerging, astronomers have put together a hypothesis of how this strange double asteroid came to be.
The Butterfly Nebula is changing, and astronomers are puzzled as to why these changes are occurring. Observations of this planetary nebula show dramatic changes in the butterfly’s ‘wings’ in just 11 years.
You’re looking at NGC 346, a star cluster 210 light years away that is energetically pumping out brand new stars from a dense cloud of gas and dust. Between 10 and 11 billion years ago, nearly all galaxies in the Universe underwent an era of intense star formation similar to what we see in NGC 346. This flurry of stellar birth is poetically nicknamed cosmic noon. Since then, star formation in the Universe has gradually dwindled, though it still blazes away in small pockets. By studying NGC 346 and other clusters like it, we can learn more about the era of cosmic noon and the evolution of galaxies.
In a recent study published in the Monthly Notices of the Royal Astronomical Society, an international team of researchers examined the levels of light pollution at astronomical observatories from around the world to better understand how artificial light is impacting night sky observations in hopes of taking steps to reduce it. But how important is it to preserve the scientific productivity of astronomical observatories from the dangers of light pollution, as noted in the study’s opening statement?
Solar coronal jets are fast moving plumes of plasma that erupt suddenly from the polar regions of the Sun. Astronomers believe that these help heat up the solar corona, but the physics behind the formation of these jets is poorly understood. Recently a team of astronomers have used observations with the Solar Dynamic Observatory and the Solar Orbiter to discover that multiple intertwining magnetic fields that connect and reconnect can power these fast moving jets.
Keep your eyes on the sky for a comet, another Mars rover has died, the leaky Soyuz will be replaced, JWST dominates the American Astronomical Society meeting, and Starship is just around the corner.
It’s no secret that the study of extrasolar planets has exploded since the turn of the century. Whereas astronomers knew less than a dozen exoplanets twenty years ago, thousands of candidates are available for study today. In fact, as of January 13th, 2023, a total of 5,241 planets have been confirmed in 3,916 star systems, with another 9,169 candidates awaiting confirmation. While opportunities for exoplanet research have grown exponentially, so too has the arduous task of sorting through the massive amounts of data involved.
Astronomers have performed an impressive suite of observations at multiple wavelengths of the same system, dubbed the HH 24 complex. This complex hosts stars in the process of being born and the impacts of their violent interactions with each other, including the ejection of one of their siblings.
Astronomers are very interested in the Habitable Zone of distant stars, which is the orbital radius where liquid water, and therefore potentially life, can exist on a planet in that region. But life itself changes the characteristics of a planet. New research suggestions that life is even capable of redefining what the Habitable Zone can mean.
A new report to Congress says the Pentagon’s task force on UFOs — now known as unidentified aerial phenomena, or UAPs — has processed more reports in the past couple of years than it did in the previous 17 years. But that doesn’t mean we’re in the midst an alien invasion.
In 2013, the National Oceanic and Atmospheric Administration (NOAA) reported that atmospheric concentrations of carbon dioxide (CO2) had reached four-hundred parts per million (ppm) for the first time since the Pliocene Era (ca. three million years ago). According to the IPCC’s Sixth Assessment Report (AR6), “excess carbon dioxide” in our atmosphere will result in a global average temperature increase of between 1.5 and 2 °C (2.7 and 3.6 °F) by 2030. This will significantly affect ecological systems worldwide, including species extinction, droughts, wildfires, extreme weather, and crop failures.
The Artemis program intends to put humans on the Moon for the first time since NASA’s Apollo missions. But Artemis has a larger scope than just landing people there, setting up some science experiments, gathering Moon rocks, playing a little golf, then leaving. The intent is to establish a consistent presence.
In the past decade and a half, hundreds of Fast Radio Bursts (FRBs) have been detected by astronomers. These transient energetic bursts occur suddenly, typically last for just a few milliseconds, and are rarely seen again (except in the rare case of repeating bursts). While astronomers are still not entirely sure what causes this phenomenon, FRBs have become a tool for astronomers hoping to map out the cosmos. Based on the way radio emissions are dispersed as they travel through space, astronomers can measure the structure and distribution of matter in and around galaxies.
For planet-hunters, finding an Earth-sized exoplanet must be special. NASA estimates there are about 100 billion planets in the Milky Way, but the large majority of the 5,000+ exoplanets we’ve found are extremely inhospitable. So finding one that’s similar to ours is kind of comforting.
Ingenuity, the helicopter assisting NASA’s Mars Perseverance rover on its mission, has been a huge success. It gathered the achievement of the first controlled flight on another heavenly body, has performed spectacularly over its 28 flights and holds records for both speed and distance. But it might not for long, as a much bigger, more capable helicopter is currently under development. And when it eventually explores Titan in the next decade, it has an excellent chance to smash many of Ingenuity’s records.
After a quarter-century of development, NASA’s James Webb Space Telescope is a smashing success. But senior project scientist John Mather, a Nobel-winning physicist who’s played a key role in the $10 billion project since the beginning, still sees some room for improvement.
Clusters of galaxies do not appear in an instant. Instead they gradually form through the accumulation of many galaxies. But when galaxies fall in they don’t just stop moving. Instead, they keep moving around. These are called backsplash galaxies, and astronomers are using them to help understand the formation history of their home clusters.