Solar systems evolve, especially early on in their lifetimes. While this evolution is primarily driven by gravity, there are some parts of our own solar system that are difficult to understand – especially how gravity forced them into their current configuration. One of the most prominent of these areas is the Trojan asteroids.
Space News & Blog Articles
In a recent study published in Nature Astronomy, an international team of researchers led by NASA and The George Washington University examined data from an October 2020 detection of what’s known as a “large spin-down glitch event”, also known as an “anti-glitch”, from a type of neutron star known as a magnetar called SGR 1935+2154 and located approximately 30,000 light-years from Earth, with SGR standing for soft gamma repeaters. Such events occur when the magnetar experiences a sudden decrease in its rotation rate, which in this case was followed by three types of radio bursts known as extragalactic fast radio bursts (FRBs) and then pulsed radio emissions for one month straight after the initial rotation rate decrease.
NASA’s Perseverance Rover has reached another milestone. It’s finished caching its samples for a potential return to Earth. The sample depot is located in Mars’ Jezero Crater, where Perseverance is busy searching for signs of ancient life.
Astronomers have discovered a galaxy with very little or no stellar mass. Galaxies like these are called ‘dark galaxies.’ It contains clouds of gas but very few stars, possibly none. This is the only isolated dark dwarf galaxy in the local universe.
Exploring Mars is hazardous work. Robotic missions that are sent there have to contend with extreme temperatures, dust storms, intermittent sunlight, and rough terrain. In recent years, two robotic missions were lost due to dust alone, and all that roving around has done a number on the Curiosity rover’s treads. It’s understandable why mission teams are pleasantly surprised when their missions make it through a rough patch. This was the case with the Ingenuity team when they discovered that the rotorcraft, which has been exploring Mars alongside Perseverance, survived the night and is back in working order.
Oftentimes in astronomy, it takes a village of telescopes and people to make an amazing find. In the case of the quasar NRAO 530, it took a planet full of radio dishes ganged together to peer into its heart. Then, it took a major collaboration of scientists to figure out what the instruments were telling them.
For astronomers, one of the greatest challenges is capturing images of objects and phenomena that are difficult to see using optical (or visible light) telescopes. This problem has been largely addressed by interferometry, a technique where multiple telescopes gather light, which is then combined to create a more complete picture. Examples include the Event Horizon Telescope, which relies on observatories from around the world to capture the first images of the supermassive black hole (SMBH) at the center of the M87 galaxy, and of Sagittarius A* at the center of the Milky Way.
NASA and its international partners have approved the crew lineup for Axiom Space’s second privately funded mission to the International Space Station — a lineup that includes the first Saudi woman cleared to go into orbit.
All the stars we can see with the naked eye are part of the Milky Way. The gravitational power of the galaxy’s combined mass binds the stars to the galaxy. But sometimes stars are evicted from the galaxy.
If life is common in our Universe, and we have every reason to suspect it is, why do we not see evidence of it everywhere? This is the essence of the Fermi Paradox, a question that has plagued astronomers and cosmologists almost since the birth of modern astronomy. It is also the reasoning behind the Hart-TIpler Conjecture, one of the many (many!) proposed resolutions, which asserts that if advanced life had emerged in our galaxy sometime in the past, we would see signs of their activity everywhere we looked. Possible indications include self-replicating probes, megastructures, and other Type III-like activity.
The Sun belted out strong solar flares two days in a row, as activity ramps up toward the next Solar Maximum, predicted for mid-2025.
Astronomers know that galaxies grow over time through mergers with other galaxies. We can see it happening in our galaxy. The Milky Way is slowly absorbing the Large and Small Magellanic Clouds and the Sagittarius Dwarf Spheroidal Galaxy.
SpaceX tests all 33 engines on Super Heavy. The worst-case scenario for space debris actually happened. A kilonova is coming. A new map of all the matter and dark matter in the Universe.
The Hubble Space Telescope recently captured the appearance of several asymmetrical ‘spokes’ rising above the rings of Saturn, marking a coming change in season for the ringed gas giant. The spokes are made of charged ice particles bulging up and away from the rest of the rings. Researchers aren’t sure exactly what causes the spokes, but they suspect it has something to do with the planet’s powerful magnetic fields.
Alongside nuclear war or a massive impact from an asteroid, anthropogenic climate change is one of the greatest existential threats facing humanity today. With the rise in greenhouse gas emissions through the 20th century, Earth’s atmosphere continues to absorb more of the Sun’s energy. This has led to rising temperatures, rising sea levels, and increased drought, famine, wildfires, and other ecological consequences. According to the Intergovernmental Panel on Climate Change (IPCC), global temperatures will increase by an average of 1.5 to 2 °C (2.7 to 3.6 °F) by 2050.
Everyone loves taking pictures of the Moon. Whether it’s with their phones or through the wonders of astrophotography, photographing the Moon reminds us about the wonders and awesomeness of the universe. But while we can take awesome images of the whole Moon from the Earth, it’s extremely difficult to get close-up images of its surface given the enormous distance we are from our nearest celestial neighbor at 384,400 km (238,855 mi). This is because the closer we try to zoom in on its surface, the blurrier, or more pixelated, the images become. Essentially, the resolution of the images becomes worse and worse. But what if we could take high-resolution images of the Moon’s surface from Earth instead of relying on satellites presently in lunar orbit to take them for us?
The age of big data is upon us, and there are scarcely any fields of scientific research that are not affected. Take astronomy, for example. Thanks to cutting-edge instruments, software, and data-sharing, observatories worldwide are accumulating hundreds of terabytes in a single day and between 100 to 200 Petabytes a year. Once next-generation telescopes become operational, astronomy will likely enter the “exabyte era,” where 1018 bytes (one quintillion) of data are obtained annually. To keep up with this volume, astronomers are turning to machine learning and AI to handle the job of analysis.
Shackleton Crater at the lunar south pole is one of the locations on NASA’s shortlist for human exploration with the future Artemis missions. But because craters at the lunar poles — like Shackleton — at have areas that are perpetually in shadow, known as permanently shadowed regions (PSRs), we don’t know for sure what lies inside the interior. However, a new spacecraft with a specialized instrument is about to change all that.
This week, NASA’s Curiosity rover stumbled across the best evidence yet that liquid water once covered much of Mars in the planet’s distant past: undulating rippled rock formations – now frozen in time – that were sculpted by the waves of an ancient shallow lake. But perhaps the biggest surprise is that they were discovered in an area that researchers expected to be dry.
Astronomy has entered the era of big data, where astronomers find themselves inundated with information thanks to cutting-edge instruments and data-sharing techniques. Facilities like the Vera Rubin Observatory (VRO) are collecting about 20 terabytes (TB) of data on a daily basis. Others, like the Thirty-Meter Telescope (TMT), are expected to gather up to 90 TB once operational. As a result, astronomers are dealing with 100 to 200 Petabytes of data every year, and astronomy is expected to reach the “exabyte era” before long.
You’ve probably never seen our Sun look like this before. This bizarre image of old Sol is made from data produced by three different space telescopes, each observing the Sun at a different wavelength.