MSL Curiosity is going about its business exploring Mars. The high-tech rover is currently exploring the sulphate-bearing unit on Mt. Sharp, the central peak in Mars’ Gale Crater. Serendipity placed a metal meteorite in its path.
Space News & Blog Articles
Black holes swallow everything—including light—which explains why we can’t see them. But we can observe their immediate surroundings and learn about them. And when they’re on a feeding binge, their surroundings become even more luminous and observable.
There’s no way to sugarcoat it: Mars has a “dust problem.” The surface of the Red Planet is covered in particulate matter consisting of tiny bits of silica and oxidized minerals. During a Martian summer in the southern hemisphere, the planet experiences dust storms that can grow to encompass the entire planet. At other times of the year, dust devils and dusty skies are a persistent problem. This hazard has claimed robotic explorers that rely on solar panels to charge their batteries, like NASA’s Opportunity rover and the InSight lander, which ended their missions in 2018 and 2022, respectively.
Kilonovae are extraordinarily rare. Astronomers think there are only about 10 of them in the Milky Way. But they’re extraordinarily powerful and produce heavy elements like uranium, thorium, and gold.
The differences between Earth and Venus are obvious to us. One is radiant with life and adorned with glittering seas, and the other is a scorching, glowering hellhole, its volcanic surface shrouded by thick clouds and visible only with radar. But the difference wasn’t always clear. In fact, we used to call Venus Earth’s sister planet.
From the time of its writing in the 2nd century CE, Claudius Ptolemy’s Almagest stood at the forefront of mathematical astronomy for nearly 1,500 years. This work included a catalog of 1,025 stars, listing their coordinates (in ecliptic longitude and latitude) and brightnesses. While astronomers within a few centuries realized that the models for the sun, moon, and planets all had issues (which we today recognize as being a result of them being incorrect, geocentric models relying on circles and epicycles instead of a heliocentric model with elliptical orbits), the catalog of stars was generally believed to be correct.
The universe was simply different when it was younger. Recently astronomers have discovered that complex physics in the young cosmos may have led to the development of supermassive stars, each one weighing up to 100,000 times the mass of the Sun.
The European Space Agency successfully tested a solar-sail-type device to speed up the deorbit time for a used cubesat carrier in Earth orbit. The so-called breaking sail, the Drag Augmentation Deorbiting System (ADEO) was deployed from an ION satellite carrier in late December 2022. Engineers estimate the sail will reduce the time it takes for the carrier to reenter Earth’s atmosphere from 4-5 years to approximately 15 months.
The James Webb Space Telescope is back to full science operations. One of the telescope’s instruments, the Near Infrared Imager and Slitless Spectrograph (NIRISS) had been offline since January 15 due to a communications error. But engineers worked through the problem and were able to return the instrument to full operations.
If you want to know where you are in space, you’d better bring along a map. But it’s a little more complicated than riding shotgun on a family road trip.
Simulations of the formation of the solar system have been largely successful. They are able to replicate the positions of all the major planets along with their orbital parameters. But current simulations have an extreme amount of difficulty getting the masses of the four terrestrial planets right, especially Mercury. A new study suggests that we need to pay more attention to the giant planets in order to understand the evolution of the smaller ones.
For space agencies and the commercial space industry, the priorities of the next two decades are clear. First, astronauts will be sent to the Moon for the first time since the Apollo Era, followed by the creation of permanent infrastructure that will allow them to say there for extended periods. Then, the first crewed missions will be sent to Mars, with follow-up missions every 26 months, culminating in the creation of surface habitats (and maybe a permanent base). To meet these objectives, space agencies are investigating next-generation propulsion, power, and life support systems.
Planets orbiting binary stars are in a tough situation. They have to contend with the gravitational pull of two separate stars. Planetary formation around a single star like our Sun is relatively straightforward compared to what circumbinary planets go through. Until recently, astronomers weren’t sure they existed.
The asteroids in our Solar System are survivors. They’ve withstood billions of years of collisions. The surviving asteroids are divided into two groups: monolithic asteroids, which are intact chunks of planetesimals, and rubble piles, which are made of up fragments of shattered primordial asteroids.
Back in 2008, astronomers made a big announcement: for the first time, they had taken pictures of a multi-planet solar system, much like ours, orbiting another star. At the time, the star system, named HR8799 was known to have three planets, but follow-up observations a year later revealed a fourth world.
In a recent study scheduled to be published in the journal Icarus in March 2023, a team of researchers led by the Southwest Research Institute (SwRI) modeled a potential correlation between an ancient freezing ocean with cryovolcanic flows and surface canyons on Pluto’s largest moon, Charon. Their hypothesis was that when Charon’s interior ocean froze long ago, the significant stress put on the icy outer shell from the addition of more ice to the bottom of the existing shell could have been responsible for the cryovolcanic flows on the surface.
The Korea Aerospace Research Institute (KARI) both ended 2022 and started 2023 on a very high note as its first-ever lunar orbiter, Danuri, sent back black-and-white images of the Earth with the Moon’s surface in the foreground that were photographed between December 24 and January 1, KARI announced in a January 3rd statement. Both the images and videos were taken less than 120 kilometers (75 miles) above the Moon’s surface, and will be “used to select potential sites for a Moon landing in 2032,” KARI added in the statement.
The cosmic zoo contains objects so bizarre and extreme that they generate gravitational waves. Scorpius X-1 is part of that strange collection. It’s actually a binary pair: a neutron star orbiting with a low-mass stellar companion called V818 Scorpii. The pair provides a prime target for scientists hunting for so-called “continuous” gravitational waves. Those waves should exist, although none have been detected—yet.
In a recent study published in Science, a team of researchers at Imperial College London examined 18 meteorites containing the volatile element zinc to help determine their origin, as it has been long hypothesized that Earth’s volatiles materials, including water, were derived from asteroids closer to our home planet. However, their results potentially indicate a much different origin story.
In a recent study submitted to the journal Icarus, a team of researchers at the International Research School of Planetary Science (IRSPS) located at the D’Annunzio University of Chieti-Pescara in Italy conducted a geological analysis of a region on Neptune’s largest moon, Triton, known as Monad Regio to ascertain the geological processes responsible for shaping its surface during its history, and possibly today. These include what are known as endogenic and exogenic processes, which constitute geologic processes occurring internally (endo-) and externally (exo-) on a celestial body. So, what new insights into planetary geologic processes can we learn from this examination of Monad Regio?
The frontiers of astronomy are being pushed regularly these days thanks to next-generation telescopes and scientific collaborations. Even so, astronomers are still waiting to peel back the veil of the cosmic “Dark Ages,” which lasted from roughly 370,000 to 1 billion years after the Big Bang, where the Universe was shrouded with light-obscuring neutral hydrogen. The first stars and galaxies formed during this same period (ca. 100 to 500 million years), slowly dispelling the “darkness.” This period is known as the Epoch of Reionization, or as many astronomers call it: Cosmic Dawn.