Creating rocky planets is a messy, dangerous, hot business. Planetesimals accrete together, which creates heat and pressure on the newborn world. The nearby adolescent star bombards them with intense radiation. That likely “bakes off” any surface oceans, lakes, or rivers, which is a disaster if you’re looking for places where life might arise or exist. That’s because life needs water and planets around these stars are among the most likely to harbor life. But, that doesn’t look too hopeful if the radiation steams the water away.
Space News & Blog Articles
Interest in the exploration of Venus has kicked up a notch lately, especially after a contested recent discovery of phosphine, a potential biosignature, in the planet’s atmosphere. Plenty of missions to Venus have been proposed, and NASA and ESA have recently funded several. However, they are mainly orbiters, trying to peer into the planet’s interior from above. But they are challenged by having to see through dozens of kilometers of an atmosphere made up of sulfuric acid.
One of the most exciting aspects of the current era of space exploration (Space Age 2.0) is how time-honored ideas are finally being realized. Some more well-known examples include retrievable and reusable rockets, retrieval at sea, mid-air retrieval, single-stage-to-orbit (SSTO) rockets, and kinetic launch systems. In addition, there are also efforts to develop propulsion systems that do not rely on conventional propellants. This technology offers many advantages, including lower mass and improved energy efficiency, ultimately leading to lower costs.
The ExoMars Rover mission is back on track for its mission to Mars, but Russia won’t be a part of it this time. Following Russia’s disastrous invasion of neighbouring Ukraine in February 2022, the ESA suspended the ExoMars program.
In some of the best footage yet, the Perseverance rover has taken new video of the Ingenuity helicopter taking off and flying over Mars’ surface.
Using archival radar images taken in the 1990s by NASA’s Magellan spacecraft, scientists have found evidence of recent active volcanism on Venus. The images revealed a volcanic vent that changed shape and increased significantly in size over an eight-month period.
Massive stars are sprinters. It might seem counterintuitive that stars 100 or 200 times more massive than our Sun could only survive for as few as 10 million years. Especially since smaller stars like our Sun can last 10 billion years. Massive stars have huge reservoirs of hydrogen to burn through, but their massive size means fusion eats through their hydrogen much more quickly.
Think there’s nothing to learn through suborbital flight and that space science is only done in orbit? Think again. Recently, a group of school students in Canada asked the question: do Epi-Pens work in space? These are epinephrine-loaded injectors used to help people with allergies survive a severe attack. To get an answer, the class at St Brother André Elementary School worked with NASA, the University of Ottawa, and the non-profit Cubes in Space program to launch some Epi-Pens on suborbital flights aboard a rocket and a high-altitude balloon. The result? Post-flight analysis showed that the pens lost their efficacy in space. It was a surprise to NASA as well as to the students.
NASA and Axiom Space Inc. provided a first, limited look at the new spacesuits that will be worn by the next astronauts to land on the Moon. The Axiom Extravehicular Mobility Unit (AxEMU) spacesuit that will be worn for the Artemis missions was only partially revealed at an event at Johnson Space Center in Houston, in order not to give away any proprietary information about the suit.
Remember how exciting it was in 2017 when a total solar eclipse crossed the United States? We’re in for two more well-placed eclipses over the next year, so it’s time to get organized to take advantage of these unparalleled celestial events.
Nearly eight years after its historic Pluto flyby, NASA’s New Horizons probe is getting ready for another round of observations made from the icy edge of the solar system — and this time, its field of view will range from Uranus and Neptune to the cosmic background far beyond our galaxy.
According to the most widely-accepted model of cosmology, the Universe began roughly 13.8 billion years ago with the Big Bang. As the Universe cooled, the fundamental laws of physics (the electroweak force, the strong nuclear force, and gravity) and the first hydrogen atoms formed. By 370,000 years after the Big Bang, the Universe was permeated by neutral hydrogen and very few photons (the Cosmic Dark Ages). During the “Epoch of Reionization” that followed, the first stars and galaxies formed, reoinizing the neutral hydrogen and causing the Universe to become transparent.
There’s something menacing about red dwarfs. Human eyes are accustomed to our benevolent yellow Sun and the warm light it shines on our glorious, life-covered planet. But red dwarfs can seem moody, ill-tempered, and even foreboding.
Planetary exploration, specifically within our own Solar System, has provided a lifetime of scientific knowledge about the many worlds beyond Earth. However, this exploration, thus far, has primarily been limited to orbiters and landers/rovers designed for surface exploration of the celestial bodies they visit. But what if we could explore subsurface environments just as easily as we’ve been able to explore the surface, and could some of these subsurface dwellings not only shelter future astronauts, but host life, as well?
Hubble Space Telescope’s Deep Field revealed thousands of galaxies in a seemingly empty spot in the sky. Now, the James Webb Space Telescope has taken deep field observations to the next level with its COSMOS-Web survey, revealing 25,000 galaxies in just six pictures, the first from this new survey.
Finding Life in the Solar System Means Crunching a Lot of Data. The Perfect Job for Machine Learning
There are plenty of places for life to hide. Even on our blue planet, where we know there is abundant life, it is sometimes difficult to predict all the different environments it might crop up in. Exploring worlds other than our own for life would make it exponentially more difficult to detect it because, realistically, we don’t really know what we’re looking for. But life will probably present itself with some sort of pattern. And there is one new technology that is exceptional at detecting patterns: machine learning. Researchers at the SETI Institute have started working on a machine-learning-based AI system that will do just that.
A newly discovered asteroid called 2023 DW has generated quite a buzz over the past week, due to an estimated 1-in-670 chance of impact on Valentine’s Day 2046. But despite a NASA advisory and the resulting scary headlines, there’s no need to put an asteroid doomsday on your day planner for that date.
Over 13 billion years ago, the first galaxies in the Universe formed. They were elliptical, with intermediate black holes (IMBHs) at their centers surrounded by a halo of stars, gas, and dust. Over time, these galaxies evolved by flattening out into disks with a large bulge in the middle. They were then drawn together by mutual gravitational attraction to form galaxy clusters, massive collections that comprise the large-scale cosmic structure. This force of attraction also led to mergers, where galaxies and their central black holes came together to create larger spiral galaxies with central supermassive black holes (SMBHs).
The picture of the Moon in the banner might not look all that spectacular, but it is absolutely astounding from a technical perspective. What makes it so unique is that it was taken via a telescope using a completely flat lens. This type of lens, called a metalens, has been around for a while, but a team of researchers from Pennsylvania State University (PSU) recently made the largest one ever. At eight cm in diameter, it was large enough to use in an actual telescope – and produce the above picture of the Moon, however, blurred it might be.
“It is possible even with existing technology, if done in the most efficient ways. New methods are needed, but none goes beyond the range of present-day knowledge. The challenge is to bring the goal of space colonization into economic feasibility now, and the key is to treat the region beyond Earth not as a void but as a culture medium, rich in matter and energy. Then, in a time short enough to be useful, the exponential growth of colonies can reach the point at which the colonies can be of great benefit to the entire human race.”