On April 10th, 2019, the world was treated to the first image of a black hole, courtesy of the Event Horizon Telescope (EHT). Specifically, the image was of the Supermassive Black Hole (SMBH) at the center of the supergiant elliptical galaxy known as M87 (aka. Virgo A). These powerful forces of nature are found at the centers of most massive galaxies, which include the Milky Way (where the SMBH known as Sagittarius A* is located).
Space News & Blog Articles
In our exploration of Mars, we’ve seen some strange, naturally occurring shapes. Polygons – a shape with at least three straight sides and angles, typically with five or more – have been seen in several different Martian landscapes, and scientists say these shapes are of great interest because they often indicate the presence of shallow ice, or that water formerly was present in these areas.
Dark matter remains one of the greatest mysteries in science. Despite decades of astronomical evidence for its existence, no one has yet been able to find any sign of it closer to home. There have been dozens of efforts to do so, and one of the most prominent just hit a milestone – the release and analysis of 8 years of data. The IceCube Neutrino Observatory will soon be releasing results from those 8 years, but for now let’s dive in to what exactly they are looking for.
Blue Origin has been busy lately. They launched their founder, Jeff Bezos, into space and put a bid in on NASA’s new Lunar Lander project. While SpaceX won that contract back in April, Blue Origin has continued to fight for their right to supply the space agency with an alternative lander. And recently, their not-quite-an-astronaut chief had added another fuel to the fire by offering to take $2 billion off the price tag of a Blue Origin lander.
On October 19th, 2017, astronomers made the first-ever detection of an interstellar object (ISO) in our Solar System. This body, named 1I/2017 U1 (‘Oumuamua), was spotted shortly after it flew by Earth on its way to the outer Solar System. Years later, astronomers are still hypothesizing what this object could have been (an interstellar “dust bunny,” hydrogen iceberg, nitrogen icebergs), with Harvard Prof. Abraham Loeb going as far as to suggest that it might have been an extraterrestrial solar sail.
One of the less appreciated aspects of George Lucas’ vision for Star Wars was that he predicted the existence of planets in binary star systems years before we saw even the first exoplanet. Now a team from the University of Cambridge and the Max Planck Institute for Extra-terrestrial Physics have found how exactly those planets can form without being torn apart by their accompanying suns.
An opportunity in 2019 lays the groundwork for balloon-borne detectors on Venus, working to unravel a key mystery.
The robotic arms of the ISS are some of its most useful tools. The arms, designed by Canadian and Japanese space agencies, have been instrumental in ferrying around astronauts and shepherding modules to one side of the ISS. However, the Russian segment lacked its own robotic arm – until a new one designed by ESA was launched last week.
Perseverance is About to Collect the First Sample on Mars That Could Eventually be Returned to Earth
On Feb. 18th, 2021, NASA’s Perseverance rover landed within the Jezero Crater on Mars. Like its predecessor, Curiosity, a fellow member of NASA’s Mars Exploration Program (MEP), the goal of Perseverance is to seek out evidence of possible life on Mars (past and present). A key part of this mission will be the first sample return ever performed on Mars, where samples obtained by Perseverance will be placed in a cache for later retrieval and return to Earth.
The Earth’s magnetic field is an underappreciated wonder of the natural world. It protects our atmosphere, provides some of the most breathtaking scenery when it creates auroras, and allows people to navigate from one side of the world to the other. Unfortunately, it won’t be able to save us from the death of the Sun though. At least that’s the finding of some new research by Dr. Dimitri Veras of the University of Warwick and Dr. Aline Vidotto of Trinity College Dublin.
As of July 23, 2021, China’s Mars rover Zhurong has traveled 585 meters across the surface of Mars. And along the way, it’s taking pictures of interesting sights.
Gravitational-wave astronomy is set to revolutionize our understanding of the cosmos. In only a few years it has significantly enhanced our understanding of black holes, but it is still a scientific field in its youth. That means there are still serious limitations to what can be observed.
Planetary formation is a complicated, multilayered process. Even with the influx of data on exoplanets, there are still only two known planets that are not yet fully formed. Known as PDS 70b and PDS 70c, the two planets, which were originally found by the Very Large Telescope, are some of the best objects we have to flesh out our planetary formation models. And now, one of them has been confirmed to have a moon-forming disk around it.
Observing the dark side of planets is hard. In the visible spectrum, they are almost unobservable, while in the infrared some heat signatures may come through, but not enough to help see what is going on in a planet’s atmosphere. Now a team from the University of Tokyo think they’ve developed a way to monitor weather patterns on the night side of one of the most difficult planets of all – Venus.
Solar sails have been receiving a lot of attention lately. In part that is due to a series of high profile missions that have successfully proven the concept. It’s also in part due to the high profile Breakthrough Starshot project, which is designing a solar sail powered mission to reach Alpha Centauri. But this versatile third propulsion system isn’t only useful for far flung adventures – it has advantages closer to home as well. A new paper by engineers at UCLA defines what those advantages are, and how we might be able to best utilize them.
Launching satellites is an expensive business – at least for now. But satellites are necessary in astronomy for one major reason – it gets telescopes above the atmosphere. The Earth’s atmosphere and its associated weather patterns are a massive hindrance to collecting good images. If a stray cloud passes in front of the observational target once over the course of a few days, it could ruin the entire image. Which is why some of the most striking astronomical pictures come from space-based observatories like Hubble. But now, a team of researchers from Durham, Toronto, and Princeton Universities has come up with a new way to get above that atmosphere that doesn’t involve a launch into orbit. They want to use a balloon.
Planet Earth is currently experiencing an unprecedented warming trend. Average global temperatures are rising at an accelerated rate in response to greenhouse gas emissions produced by human activity. These rising temperatures, in turn, result in the release of additional greenhouse gases (like methane), leading to positive feedback loops that threaten to compound the problem further.
Space is full of hazards. The Earth, and it’s atmosphere, does a great job of shielding us from most of them. But sometimes those hazards are more powerful than even those protections can withstand, and potentially catastrophic events can result. Some of the most commonly known potential catastrophic events are solar flares. While normal solar activity can be deflected by the planet’s magnetic field, resulting in sometimes spectacular auroras, larger solar flares are a danger to look out for. So it’s worth celebrating a team of researchers from the International Space Science Institute which found a way to better track these potentially dangerous natural events.
In the coming decade, NASA and the ESA will be sending two dedicated missions that will explore Jupiter’s moon Europa. These missions are known as the Europa Clipper and the JUpiter ICy moons Explorer (JUICE) missions, which will fulfill a dream that has been decades in the making – searching for possible evidence of life inside Europa. Since the 1970s, astronomers have theorized that this satellite contains a warm-water ocean that could support life.