Two thousand five hundred years ago, during the height of the bronze age, an old red star died. Its outer layers expanded over time, becoming what is now known as the Southern Ring Nebula, or less romantically, NGC 3132. By the looks of it, this planetary nebula looks like many others. As Sun-like stars die, they swell to become red giants before becoming a white dwarf, and their outer layers typically become a planetary nebula. But a recent study finds that this particular nebula formed in a way quite messier than we had thought.
Space News & Blog Articles
As far as we know, nobody lives in our neighbour, the Small Magellanic Cloud (SMC.) So it’s okay to point our telescope there and gaze at it.
When it comes to planetary exploration, particularly of Venus, a big part of the story is under the surface. It’s a story that ESA’s EnVision mission was selected to tell when it gets to the planet in the 2030s. That’s because the spacecraft will include a subsurface radar sounder (SRS) to “peek under the surface” of Venus.
Last week gave us a celestial triple header, all in one night. The Moon was full and Mars was at opposition (at its closest point to Earth). But the pièce de résistance was when the Moon occulted or passed in front of Mars on the evening/morning of December 7th/8th. Our astrophotographer friends were out in full force to capture the event.
According to the most widely-accepted theory about star formation (Nebular Hypothesis), stars and planets form from huge clouds of dust and gas. These clouds undergo gravitational collapse at their center, leading to the birth of new stars, while the rest of the material forms disks around it. Over time, these disks become ring structures that accrete to form systems of planets, planetoids, asteroid belts, and Kuiper belts. For some time, astronomers have questioned how interactions between early stellar environments may affect their formation and evolution.
A new study has shown that in order to grow more than one giant planet in the same solar system, the planets must go through a complicated and intricate dance to prevent one from destroying the other.
The large scale structure of the universe is dominated by vast empty regions known as cosmic voids. These voids appear as holes hundreds of millions of light years across in the distribution of galaxies. However, new research shows that many of them may surprisingly still be filled with dark matter.
For the first time ever, physicists have set off a controlled nuclear fusion reaction that released more energy than what was put into the experiment.
The Moon’s pock-marked surface tells the story of its history. It’s marked by over 9,000 impact craters, according to the International Astronomical Union (IAU.) The largest ones are called impact basins, not craters. According to a new study, asteroids didn’t create the basins; leftover planetesimals did.
On December 11th, at 09:40 a.m. PST (12:40 p.m. EST), NASA’s Artemis I mission splashed down in the Pacific Ocean off the coast of Baja California. The return of the uncrewed Orion spacecraft marks the end of the Artemis Program’s inaugural mission, which launched on November 16th and validated the spacecraft and its heavy launch vehicle – the Space Launch System (SLS). During its 25.5-day circumlunar flight, the Orion spacecraft traveled more than 2.25 million km (1.4 million mi) and flew beyond the Moon’s orbit, establishing a new distance record.
About 13 billion years ago, the stars in the Universe’s earliest galaxies sent photons out into space. Some of those photons ended their epic journey on the James Webb Space Telescope’s gold-plated, beryllium mirrors in the last few months. The JWST gathered these primordial photons over several days to create its first “Deep Field” image.
Black Holes Shouldn’t be Able to Merge, but Dozens of Mergers Have Been Detected. How Do They Do It?
Who knows what lurks in the hearts of some globular clusters? Astronomers using a collection of gravitational wave observatories found evidence of collections of smaller black holes dancing together as binaries in the hearts of globulars. What’s more, they’ve detected an increased number of gravitational wave events when some of these stellar-mass black holes crashed together.
For years cosmologists had thought that a strange feature appearing in the microwave sky, known as the CMB cold spot, was due to the light passing through a giant supervoid. But new research casts that conclusion into doubt.
Black holes are gluttonous behemoths that lurk in the center of galaxies. Almost everybody knows that nothing can escape them, not even light. So when anything made of simple matter gets too close, whether a planet, a star or a gas cloud, it’s doomed.
The nearest known exoplanet to Earth, the planet orbiting Proxima Centauri, experiences some pretty nasty space weather from its parent star. But previous work on the space weather of Proxima relied on a lot of assumptions. The bad news is that new research has confirmed the grim picture.
The “Blue Marble” was one of the most iconic pictures of the Apollo era. Taken by the astronauts of Apollo 17 on their return trip from the moon, the first fully illuminated image of the Earth taken by a person captured how the world looked on December 7th, 1972, just over 50 years ago. Now, a team from the Max Planck Institute for Meteorology has recreated that iconic image using a climate model.
Asteroid impacts rank highest on the UN’s list of potentially species-ending calamities. They’ve been the subject of countless movies and books, some of which are accurate depictions of what would happen, and some of which are not. Now, if you’ve ever been interested to see what would happen if different sizes of asteroid impact different areas of the globe, the internet has a tool for you!
There’s an argument to be made that some astronomical pictures are better inspirational tools than all of the science that the missions that took them might have collected during their lifetimes. This author personally had his interest in space exploration sparked when he first saw the Ultra Deep Field and then had it permanently ingrained in his brain with the Pale Blue Dot and the associated book. The fact that they have individual names (Earth Rise, The Blue Marble, etc.) shows their importance to our collective understanding of our planet and our place in the Universe. Now, we might have a new one, as we’ve received a spectacular view of our Moon and a crescent Earth from the Artemis 1 mission.
Can we build an enormous umbrella to dim the Sun? Such a feat would be a megaproject on a scale like no other. It would take at least 400 dedicated rocket launches a year, for ten years (There have been 172 rocket launches by all nations so far in 2022). The project would weigh in at 550,000 tons: at its lightest. And it would be an ecological experiment that puts us all – the entire planet – in the petri dish, with high risk and high reward. But could such a project actually reverse climate change and bring us back from the brink of global disaster?
The Mars Sample Return (MSR) part of Perseverance’s mission is picking up – literally. For the past few months, the rover has concentrated on picking up samples that will eventually be returned to Earth as part of the future Mars Sample Return mission. Back on Earth, plenty of advanced technologies can poke and prod the samples in ways that would never be feasible to launch with a spacecraft. However, if scientists decide to poke or prod Perseverance’s latest collections, they might have a hard time because they are made of regular regolith.
Primordial black holes remain an intriguing option to potentially explain dark matter. A new study has found a plausible scenario for creating them in the early universe.