The search for extraterrestrial intelligence (SETI) has fascinated us for decades. Now a team of researchers have used the Murchison Widefield Array in Australia to scan great swathes of sky for alien signals. Unusually for a SETI project, this one focussed attention on 2,800 galaxies instead of stars within our own. They have been on the lookout for advanced civilisations that are broadcasting their existence using the power of an entire star. Alas they weren’t successful but its an exciting new way to search for alien intelligence.
Space News & Blog Articles
Solar sails are an exciting way to travel through the Solar System because they get their propulsion from the Sun. NASA has developed several solar sails, and their newest, the Advanced Composite Solar Sail System (or ACS3), launched a few months ago into low-Earth orbit. After testing, NASA reported today that they extended the booms, deploying its 80-square-meter (860 square feet) solar sail. They’ll now use the sail to raise and lower the spacecraft’s orbit, learning more about solar sailing.
Rogue Planets, or free-floating planetary-mass objects (FFPMOs), are planet-sized objects that either formed in interstellar space or were part of a planetary system before gravitational perturbations kicked them out. Since they were first observed in 2000, astronomers have detected hundreds of candidates that are untethered to any particular star and float through the interstellar medium (ISM) of our galaxy. In fact, some scientists estimate that there could be as many as 2 trillion rogue planets (or more!) wandering through the Milky Way alone.
Scientists have discovered that Earth has a third field. We all know about the Earth’s magnetic field. And we all know about Earth’s gravity field, though we usually just call it gravity.
Digging in the ground is so commonplace on Earth that we hardly ever think of it as hard. But doing so in space is an entirely different proposition. On some larger worlds, like the Moon or Mars, it would be broadly similar to how digging is done on Earth. But their “milligravity” would make the digging experience quite different on the millions of asteroids in our solar system. Given the potential economic impact of asteroid mining, there have been plenty of suggested methods on how to dig on an asteroid, and a team from the University of Arizona recently published the latest in a series of papers about using a customized bucket wheel to do so.
After about 10 years of construction, the Vera Rubin Observatory (VRO) is scheduled to see its first light in January 2025. Once it’s up and running, it will begin its Legacy Survey of Space and Time (LSST), a decade-long effort to photograph the entire visible sky every few nights. It’ll study dark energy and dark matter, map the Milky Way, and detect transient astronomical events and small Solar System objects like Near Earth Objects (NEOs).
Warp drives have a long history of not existing, despite their ubiquitous presence in science fiction. Writer John Campbell first introduced the idea in a science fiction novel called Islands of Space. These days, thanks to Star Trek in particular, the term is very familiar. It’s almost a generic reference for superliminal travel through hyperspace. Whether or not warp drive will ever exist is a physics problem that researchers are still trying to solve, but for now, it’s theoretical.
In 2022, NASA’s DART (Double Asteroid Redirection Test) spacecraft collided with an object named Dimorphos. The objective was to test redirecting hazardous asteroids by deflecting them with an impact. The test was a success, and Dimorphos was measurably affected.
Betel-gurz or Beetle-juice has been a favourite among amateur astronomers for many years. However you pronounce it, its unexpected dimming draw even more attention to this red supergiant variable star in Orion. It has a few cycles of variability, one of them occurs over a 2,170 day period, 5 times longer than its normal pulsation period. A paper has just been published that suggests a companion star of 1.17 solar masses could be the cause. It would need an orbit about 2.43 times the radius of Betelgeuse and it might just lead to the modulation of dust in the region that causes the variations we see.
As humans spread into the cosmos, we will take a plethora of initially Earth-bound life with us for the ride. Some might be more beneficial or potentially harmful than others. And there is no lifeform more prevalent on Earth than bacteria. These tiny creatures and fungi, their long-lost cousins on the evolutionary tree, have a habit of clumping together to form a type of structure known as a biofilm. Biofilms are ubiquitous in Earth-bound environments and have been noticed on space missions for decades. But what potential dangers do they pose? More interestingly, what possible problems can they solve? A paper from a group of scientists focused on life support systems in the journal Biofilm provides a high-level overview of the state of the science of understanding how biofilms work in space and where it might need to go for us to establish a permanent human presence off-world.
Just outside the Milky Way Galaxy, roughly 210,000 light-years from Earth, there is the dwarf galaxy known as the Small Magellanic Cloud (SMC). Measuring about 18,900 light-years in diameter and containing roughly 3 billion stars, the SMC and its counterpart – the Large Magellanic Cloud (LMC) – orbit the Milky Way as satellite galaxies. Scientists are particularly interested in these satellites because of what they can teach us about star formation and the process where galaxies evolve through mergers, which is something the Milky Way will do with these two galaxies someday.
Any mission to Jupiter and its moons must contend with the gas giant’s overwhelming radiation. Only a judicious orbital pattern and onboard protective measures can keep a spacecraft safe. Even then, the powerful radiation dictates a mission’s lifespan.
Human bodies are sacks of fluids supported by skeletons. The entire human organism has evolved over billions of years on Earth in harmony with the planet’s specific gravity. But when astronauts spend too much time on the ISS in a microgravity environment, the organism responds, the fluids shift, and problems can occur.
A nasty sort of bias called Malmquist bias affects almost every astronomical survey, and the only solution is to…keep doing surveys.
One of NASA’s core mission objectives, though not explicitly stated in its charter, is to educate Americans about space exploration, especially students. As part of that mission, NASA hosts a number of challenges every year where teams of students compete to come up with innovative ideas to solve problems. The agency recently announced the next round of one of its standard yearly challenges—the Human Lander Challenge.
Astronauts Butch Wilmore and Suni Williams will remain on board the International Space Station until February, returning to Earth on a SpaceX Crew Dragon. NASA announced its decision over the weekend, citing concerns about the safety of the Boeing Starliner capsule due to helium leaks and thruster issues. The troublesome Starliner is slated to undock from the ISS without a crew in early September and attempt to return on autopilot, landing in the New Mexico desert.
On January 20th, 2024, the Japan Aerospace Exploration Agency (JAXA) made history when its Smart Lander for Investigating Moon (SLIM) made a soft landing on the Moon, becoming the first Japanese robotic mission to do so. This small-scale lander was designed to investigate the origins of the Moon and test technologies that are fundamental to exploring the low-gravity lunar environment. Unfortunately, mission controllers lost contact with the lander after April 28th, 2024, and have spent the last few months trying to reestablish communications.
The first spacecraft to use gravity assist was NASA’s Mariner 10 in 1974. It used a gravity assist from Venus to reach Mercury. Now, the gravity assist maneuver is a crucial part of modern space travel.
Exoplanets are often discovered using the transit method (over three quarters of those discovered have been found this way.) The same transit technique can be used to study them, often revealing detail about their atmosphere. The observations are typically made in visible light or infrared but a new paper suggests X-rays may be useful too. Stellar wind interactions with the planet’s atmosphere for example would lead to X-ray emissions revealing information about the atmosphere. As we further our exploration of exoplanets we develop our understanding of our own Solar System and ultimately, the origins of life in the Universe.
Life is rare, and it requires exactly the right environmental mix to establish itself. And there’s one surprising contributor to that perfect mix: gigantic black holes.
Can a kilometer-scale telescope help conduct more efficient science, and specifically for the field of optical interferometry? This is what a recently submitted study hopes to address as a pair of researchers propose the Big Fringe Telescope (BFT), which is slated to comprise 16 telescopes 0.5-meter in diameter and will be equivalent to a telescope at 2.2 kilometers in diameter. What makes BFT unique is its potential to create real-time exoplanet “movies” like the movies featuring Venus transiting our Sun, along with significantly reduced construction costs compared to current ground-based optical interferometers.