Is Mars home to an underwater lake? Different researchers are reaching different conclusions. Some say remote sensing from the Mars Express orbiter shows liquid water in an underground lake at Mars’ south polar region. Other researchers say clays or minerals explain the data better.
Space News & Blog Articles
In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.
There’s no surface water on Mars now, but there was a long time ago. If you ask most people interested in Mars, what’s left of it is underground and probably frozen.
What if a 10 km (6.5 mile)-wide asteroid was on a bee-line towards Earth, with an impending, calamitous impact just six months away? This was the scenario in the recent Netflix film, “Don’t Look Up.” The movie has led many to wonder if we have the resources and technology ready and available today to avert such a disaster.
Testing is key to the success of any space mission, and the more complex the mission, the more testing is required to complete it successfully. The Mars Sample Return (MSR) mission is one of the most ambitious missions ever undertaken. It started with the Perseverance rover, which is currently exploring Jezero crater while occasionally stopping to fill sample bottles with interesting material. But the more impressive engineering feat is what happens next. NASA plans to launch a combination lander, rover, and ascent rocket that will land on the Martian surface, pick up the sample containers Perseverance has left behind, sterilize them, launch them back into space, and then return them to Earth.
According to our current Cosmological models, the Universe began with a Big Bang roughly 13.8 billion years ago. During the earliest periods, the Universe was permeated by an opaque cloud of hot plasma, preventing atoms from forming. About 380,000 years later, the Universe cooled to a temperature of about -270 °C (-454 °F), which converted much of the energy generated by the Big Bang into light. This afterglow is now visible to astronomers as the Cosmic Microwave Background (CMB), first observed during the 1960s.
Before NASA’s TESS (Transiting Exoplanet Survey Satellite) mission launched in 2018, astronomers tried to understand what it would find in advance. One study calculated that TESS would find between 4430 and 4660 new exoplanets during its primary two-year-long mission.
Young stars go through a lot as they’re being born. They sometimes emit jets of ionized gas called MHOs—Molecular Hydrogen emission-line Objects. New images of two of these MHOs, also called stellar jets, show how complex they can be and what a hard time astronomers have as they try to understand them.
Do you have a few minutes to spare and a thirst for knowledge about one of the greater mysteries of the Universe? Then head on over to ArsTechnica and check out the new series they’re releasing titled Edge of Knowledge, starring none other than Dr. Paul Sutter. In what promises to be an enlightening journey, Dr. Sutter will guide viewers through an eight-episode miniseries that explores the mysteries of the cosmos, such as black holes, the future of climate change, the origins of life, and (for their premiere episode) Dark Matter!
It’s really happening. The James Webb Space Telescope has successfully reached its orbital destination in space, 1.5 million km (1 million miles) from Earth. A final 5-minute thruster firing on January 24, 2022 put JWST in its halo orbit at the Sun-Earth Lagrange 2 (L2) point. The formal commissioning process can now begin.
The search for life on Venus has a fascinating history. Carl Sagan famously and sarcastically said there were obviously dinosaurs there since a thick haze we couldn’t see through covered the surface. More recently, evidence has pointed to a more nuanced idea of how life might exist on our sister planet. A recent announcement of phosphine in the Venusian atmosphere caused quite a stir in the research community and numerous denials from other research groups. But science moves on, and now some of the researchers involved in the phosphine finding have come up with a series of small missions that will help settle the question more thoroughly – by directly sampling Venus’ atmosphere for the first time in almost 40 years.
Challenges are one way to encourage innovation. They’ve been leveraged by numerous space and non-space research organizations in the last decade, with varying degrees of success. The European Space Agency (ESA) is now getting in on the action, with a challenge to prospect the moon for vital resources that will make a sustainable presence there possible. Recently thirteen teams from all over the continent (and Canada) competed in a gloomy hall in the Erasmus Innovation Centre in the Netherlands.
New research shows that Mars has faced a constant rain of meteors during the last 600 million years. This finding contradicts previous research showing that the impact rate has varied, with prominent activity spikes. Why would anyone care how often meteors rained down on Mars, a planet that’s been dead for billions of years?
Jerry Woodfill, an engineer who worked diligently behind the scenes during NASA’s Apollo program, has passed away at age 79. Jerry was still employed by the Johnson Space Center (JSC) at the time of his death, working there for over 57 years. Most notably, Jerry worked as the lead engineer behind the Caution and Warning System on the Apollo spacecraft, which alerted astronauts to issues such as Apollo 11’s computer problems during the first Moon landing, and the explosion of Apollo 13’s oxygen tanks.
We found our first exoplanets orbiting a pulsar in 1992. Since then, we’ve discovered many thousands more. Those were the first steps in identifying other worlds that could harbour life.
Among the thousands of known exoplanets, there are some that are very odd. Take, for example, the exoplanet known as WASP-103b. It’s a large planet with a mass about 1.5 times that of Jupiter, but 103b is so close to its star it makes a complete orbit every 22 hours. At this proximity, many astronomers wonder if the world is on the edge of being ripped apart by tidal forces. But a new study shows us that something much more interesting is going on.
In February 2016, Gravitational Waves (GWs) were detected for the first time in history. This discovery confirmed a prediction made by Albert Einstein over a century ago and triggered a revolution in astronomy. Since then, dozens of GW events have been detected from various sources, ranging from black hole mergers, neutron star mergers, or a combination thereof. As the instruments used for GW astronomy become more sophisticated, the ability to detect more events (and learn more from them) will only increase.
Axions are a popular candidate in the search for dark matter. There have been previous searches for these hypothetical particles, all of which have come up with nothing. But recently the results of a new search for dark matter axions have been published…and has also found nothing. Still, the study is interesting because of the nature and scale of the search.
Last month, an Ariane 5 rocket carried the James Webb Space Telescope (JWST) safely to space, the latest of 112 total launches for the European Space Agency’s (ESA) primary workhorse rocket. With a 95.5% success rate, the Ariane 5 has been a reliable ride to space for decades, but its story is about to come to an end. ESA is no longer building new Ariane 5 vehicles, instead developing its next-generation rocket, the Ariane 6, which is intended to provide cheaper access to space. This week, the first completed core stage of a new Ariane 6 rocket arrived at the spaceport outside Korou in French Guiana for testing.
Carbon is critical to life, as far as we know. So anytime we detect a strong carbon signature somewhere like Mars, it could indicate biological activity.