A spacecraft takes between about seven and nine months to reach Mars. The time depends on the spacecraft and the distance between the two planets, which changes as they follow their orbits around the Sun. NASA’s Perseverance is the most recent spacecraft to make the journey, and it took about seven months.
Space News & Blog Articles
Fast radio bursts (FRBs) are intense flashes of radio light that last for only a fraction of a second. They are likely caused by the intense magnetic fields of a magnetar, which is a highly magnetic neutron star. Beyond that, FRBs remain a bit of a mystery. We know that most of them originate from outside our galaxy, though the few that have occurred within our galaxy have allowed us to pin the source on neutron stars. We also know that some of them repeat, meaning that FRBs can’t be caused by a cataclysmic event such as a supernova. Thanks to one repeating FRB, we now know something new about them.
At the end of large engineering projects, the design team is typically asked to develop a document, in some cases called a Theory of Operations. This document is meant to describe the design decisions, why they were made, and how they were implemented. The document intends to inform future engineers about why a system operates the way it does so they can assess if any modifications or improvements can be made. It also allows the design engineers to reflect on their work as a whole, sometimes in a new light. Recently, some original members of the design team of the James Webb Space Telescope decided to take their shot at a brief version of such a document, releasing a paper that describes the design history of what is now considered to be one of the crowning jewels of humanity’s space telescope fleet.
The discovery of a few thousand type 1a supernovae over the last few decades has helped measure the expansion of the Universe. The new Vera Rubin Observatory will soon to start scour the skies looking for more. Astronomers hope that the discovery and observations of millions more exploding stars will allow the universal expansion to be mapped in unprecedented detail. If all goes to plan, the survey will begin in a few months with the entire southern sky being scanned every few nights.
The space debris problem won’t solve itself. We’ve been kicking the can down the road for years as we continue launching more rockets and payloads into space. In the last couple of years, organizations—especially the European Space Association—have begun to address the problem more seriously.
The exoplanet WASP-127b is an unusual world. It is about 30% larger than Jupiter but has just a fifth of Jupiter’s mass. It is an example of a super-puff planet because of its extremely low density. These puffy worlds are so unusual that we don’t know if they would resemble the gas giants of our solar system, or something more exotic, such as a large super-Earth. But a recent study of WASP-127b shows that super-puff worlds can have tremendous winds.
Predicting space weather is more complex than predicting traditional weather here on Earth. One of the most unpredictable kinds of space weather is solar flares, which explode out from the surface of the Sun and can potentially damage sensitive equipment like electrical grids and the ISS. The Carrington Event, one of the most violent solar storms in history, literally caused telegraph lines to catch fire when it occurred in 1859 – a similar storm would be much more devastating today. Due to their potentially destructive potential, scientists have long looked for ways to predict when a storm will happen, and now a team led by Emily Mason of Predictive Sciences, Inc. in San Diego thinks they might have found a way to do just that.
Exoplanets come in a variety of forms and one particular type, the Hot Jupiters have recently captured the attention of astronomers. They are usually found orbiting extremely close to their host star, completing an orbit in a few days or even hours. It has been thought that they migrated further out from the star, bullying other planets out of their way. Sometimes hurling them into the star or throwing them out of the system entirely. A new study however, suggests their evolution is not quite so violent since a Hot Jupiter has been found in a system with a Super-Earth and an icy giant.
Back in the 60’s and 70’s it was all about the Moon. The Apollo program took human beings to the Moon for the first time and now over 50 years later things are really hotting up again. The latest mission to head toward our celestial neighbour is a SpaceX Falcon 9 rocket launching Blue Ghost Mission 1 and the HAKUTO-R lander. The Blue Ghost is part of NASA’s Commercial Lunar Payload Services (CLPS) and it carries a total of 10 NASA payloads, the other is a private Japanese enterprise to explore the Moon. The launch went well and both landers will arrive shortly.
NASA’s Curiosity Rover has been exploring Mars since 2012 and, more recently has found evidence of ice-free ancient ponds and lakes on the surface. The rover found small undulations like those seen in sandy lake-beds on Earth. They would have been created by wind-driven water moving back and forth across the surface. The inescapable conclusion is that the water would have been open to the elements instead of being covered by ice. The discovery suggests the ripples formed 3.7 billion years ago.
Gas is the stuff of star formation, and most galaxies have enough gas in their budget to form some stars. However, the picture is a little different for dwarf galaxies. They lack the mass required to hold onto their gas when more massive neighbouring galaxies are siphoning it off.
The ISS’s orbit is slowly decaying. While it might seem a permanent fixture in the sky, the orbiting space laboratory is only about 400 km above the planet. There might not be a lot of atmosphere at that altitude. However, there is still some, and interacting with that is gradually slowing the orbital speed of the station, decreasing its orbit, and, eventually, pulling it back to Earth. That is, if we didn’t do anything to stop it. Over the 25-year lifespan of the station, hundreds of tons of hydrazine rocket fuel have been carried to it to enable rocket-propelled orbital maneuvers to keep its orbit from decaying. But what if there was a better way – one that was self-powered, inexpensive, and didn’t require constant refueling?
What came first, galaxies or planets? The answer has always been galaxies, but new research is changing that idea.
There’s plenty of action at the center of the galaxy, where a supermassive black hole (SMBH) known as Sagittarius A* (Sgr A*) literally holds the galaxy together. Part of that action is the creation of gigantic flares from Sgr A*, which can give off energy equivalent to 10 times the Sun’s annual energy output. However, scientists have been missing a key feature of these flares for decades – what they look like in the mid-infrared range. But now, a team led by researchers at Harvard’s Center for Astrophysics and the Max Planck Institute for Radio Astronomy has published a paper that details what a flare looks like in those frequencies for the first time.
Water is the essence of life. Every living thing on Earth contains water within it. The Earth is rich with life because it is rich with water. This fundamental connection between water and life is partly due to water’s extraordinary properties, but part of it is due to the fact that water is one of the most abundant molecules in the Universe. Made from one part oxygen and two parts hydrogen, its structure is simple and strong. The hydrogen comes from the primordial fire of the Big Bang and is by far the most common element. Oxygen is created in the cores of large stars, along with carbon and nitrogen, as part of the CNO fusion cycle.
The problem with debating a flat-Earther is that they didn’t arrive at their conclusions from the weight evidence, so using the evidence isn’t going to work to change their minds.
The traditional theory of black hole formation seems to struggle to explain how black holes can merge into larger more massive black holes yet they have been seen with LIGO. It’s possible that they may have formed at the beginning of time and if so, then they may be a worthy candidate to explain dark matter but only if there are enough of them. A team of researchers recently searched for microlensing events from black holes in the Large Magellanic Cloud but didn’t find enough to account for more than a fraction of dark matter.
Few places in the solar system are better suited to a balloon than Titan. The combination of low gravity and high atmospheric density makes Saturn’s largest moon ideal for a lighter than “air” vehicle, and the idea to put one there has been around for at least two decades. So why haven’t we yet? The simple answer is the size of the necessary balloon is too large for the existing launch platforms. But a team from Boeing, the prime contractor on the Space Launch System (SLS), believes their new launch platform will be capable of getting a large balloon into orbit, along with its necessary scientific payload – and start unlocking the mysteries of this intriguing moon.
Mars is well-known for its dust storms, which occur every Martian year during summer in the southern hemisphere. Every three Martian years (five and a half Earth years), these storms grow so large that they are visible from Earth and will engulf the entire planet for months. These storms pose a significant threat to robotic missions, generating electrostatic charges that can interfere with their electronics or cause dust to build up on their solar panels, preventing them from drawing enough power to remain operational.