A team of astronomers studied two nearby globular clusters, 47 Tucanae and Omega Centauri, searching for signals produced by annihilating dark matter. Those the searches turned up empty, they weren’t a failure. The lack of a detection placed strict upper limits on the mass of the hypothetical dark matter particle.
Space News & Blog Articles
Way back in the late 1980s, the Voyager 2 spacecraft visited Uranus and Neptune. During the flybys, we got to see the first close-up views of those ice giants. Even then, planetary scientists noticed a marked color difference between the two. Yes, they both sport shades of blue. But, if you look closely at Uranus, you see a featureless pale blue planet. Neptune, on the other hand, boasts interesting clouds, dark banding, and dark spots that come and go. They’re all set against a darker blue backdrop.
Two peculiar spiral galaxies are in the latest image release from the Hubble Space Telescope. The two galaxies, collectively known as Arp 303, are located about 275 million miles away from Earth. IC 563 is the odd-shaped galaxy on the bottom right while IC 564 is a flocculent spiral at the top left.
Now less than one year until the projected launch date, ESA’s JUICE mission is in the final phases of development. The JUpiter ICy moons Explorer (JUICE) is now fully built with all ten instruments integrated into the spacecraft bus. Next comes all-up testing in a full flight configuration.
In about 5 billion years, the Sun will leave the main sequence and become a red giant. It’ll expand and transform into a glowering, malevolent ball and consume and destroy Mercury, Venus, Earth, and probably Mars. Can humanity survive the Sun’s red giant phase? Extraterrestrial Civilizations (ETCs) may have already faced this existential threat.
Solar sailing technology has been a dream of many for decades. The simple elegance of sailing on the light waves of the sun does have a dreamy aspect to it that has captured the imagination of engineers as well as writers. However, the practicalities of the amount of energy received compared to that needed to move useful payloads have brought those dreams back to reality. Now, a team led by Amber Dubill of John Hopkins University Applied Physics Laboratory and supported by the NASA Innovative Advanced Concepts (NIAC) program is developing new solar sail architecture that might have already found its killer app – heliophysics.
Humans aren’t the only living things in place onboard the ISS. Bacteria, which has found a way to integrate itself into every biome on Earth, has also found a home in the aseptic microgravity of the space station high above it. Unfortunately, this poses a hazard to both the astronauts that live on the ISS and the station itself. But now, a team of researchers funded by ESA and the Instituto Italiano di Tecnologia (IIT) think they have a solution – make the surfaces on the ISS antimicrobial.
Most of the stars in the Milky Way are single stars. But between one-third and one-half of them are binary stars. Can habitable planets form in these environments?
Utilizing tools for purposes they weren’t initially intended for is a strength of the astronomical community. Scrounging through data collected for one purpose and looking for hints of another seems to be a favorite pastime of many a professional astronomer. That tradition is alive and well, with a team reanalyzing the first few data sets from Gaia, ESA’s star cataloging explorer. They found hints of exoplanets, and it turns out the probe launched in 2013 is a much better planet hunter than initially thought.
Ever since astronomers found that Earth and the Solar System are not unique in the cosmos, humanity has dreamed of the day when we might explore nearby stars and settle extrasolar planets. Unfortunately, the laws of physics impose strict limitations on how fast things can travel in our Universe, otherwise known as Einstein’s General Theory of Relativity. Per this theory, the speed of light is constant and absolute, and objects approaching it will experience an increase in their inertial mass (thereby requiring more mass to accelerate further).
There’s a revolution underway in astronomy. In fact, you might say there are several. In the past ten years, exoplanet studies have advanced considerably, gravitational wave astronomy has emerged as a new field, and the first images of supermassive black holes (SMBHs) have been captured. A related field, interferometry, has also advanced incredibly thanks to highly-sensitive instruments and the ability to share and combine data from observatories worldwide. In particular, the science of very-long baseline interferometry (VLBI) is opening entirely new realms of possibility.
Old computer systems have a lot of wacky ways to fail. Computers that are constantly blasted by radiation have even more wacky ways to fail. Combine those two attributes, and eventually, you’re bound to have something happen. It certainly seems to have with Voyager 1. The space probe, which has been in active service for NASA for almost 45 years, is sending back telemetry data that doesn’t make any sense.
Did this grow from the merger of little black holes to a giant supermassive object called Sagittarius A*? The network of radio observatories that made this image possible includes the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder EXperiment (APEX) in the Atacama Desert in Chile, co-owned and co-operated by ESO is a partner on behalf of its member states in Europe.
Our planet’s oceans generate tell-tale light signatures when sunlight reflects off them. Exoplanets with significant ocean coverage may do the same. Can we use the Earth’s reflectance signatures to identify other Earth-like worlds with large oceans?
On March 26th, the ESA’s Solar Orbiter made its closest approach to the Sun so far. It ventured inside Mercury’s orbit and was about one-third the distance from Earth to the Sun. It was hot but worth it.
If skies are clear, be sure to watch for a potential tau Herculid meteor outburst early next Tuesday morning.
Everyone loves looking at the Moon, especially through a telescope. To see those dark and light patches scattered across its surface brings about a sense of awe and wonder to anyone who looks up at the night sky. While our Moon might be geologically dead today, it was much more active billions of years ago when it first formed as hot lava blanketed hundreds of thousands of square kilometers of the Moon’s surface in hot lava. These lava flows are responsible for the dark patches we see when we look at the Moon, which are called mare, translated as “seas”, and are remnants of a far more active past.
Spacesuits are Leaking Water and NASA is Holding off any Spacewalks Until They can Solve the Problem
NASA’s spacesuits are getting old. The extra-vehicular mobility units – EMUs for short – were designed and built for spacewalks outside NASA’s space shuttles, which flew for the last time in 2011. Nowadays, the EMUs are an integral part of maintaining and upgrading the International Space Station (ISS) exterior, providing the crew with the ability to live and work in the vacuum of space for extended periods of time (spacewalks regularly last from 6 to 8 hours). However, at the end of the most recent spacewalk on March 23, NASA astronaut Kayla Barron discovered water in the helmet of German astronaut Matthias Maurer while she helped him remove the suit.
Last week, Boeing’s next-generation CST-100 Starliner took off from Space Launch Complex 41 at Cape Canaveral, reached orbit, and docked with the International Space Station (ISS). Designated Orbital Flight Test-2 (OFT-2), this uncrewed test flight successfully validated the reusable space capsule for NASA’s Commercial Crew Program (CCP). This program, a public-private partnership between NASA and commercial launch providers (SpaceX and Boeing), aims to provide safe, reliable, and cost-effective payload and crew transportation to the ISS from American soil.
NASA is planning a mission to demonstrate the ability to repair and upgrade satellites in Earth orbit. The mission, called OSAM-1 (On-orbit Servicing, Assembly, and Manufacturing-1), will send a robotic spacecraft equipped with robotic arms and all the tools and equipment needed to fix, refuel or extend satellites’ lifespans, even if those satellites were not designed to be serviced on orbit.