Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

Another Clue Into the True Nature of Fast Radio Bursts

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.

Most FRBs happen well beyond our galaxy, so while we can pin down their locations, it’s difficult to observe any details about their cause. Then in 2020 we observed a fast radio burst in our galaxy. Subsequent observations found that it originated in the region of a highly magnetized neutron star known as a magnetar. This led to the idea that magnetars were the source of FRBs, possibly through magnetic flares similar to solar flares. But magnetars and Sun-like stars are very different. It still wasn’t clear how a magnetar could release such a tremendous amount of energy so quickly, even with their intense magnetic fields. Now a new study suggests the magnetar’s rotation plays a key role.

The study focuses on the 2020 FRB magnetar. Known as SGR 1935+2154, it is both a magnetar and a pulsar. This means it emits a regular radio pop as it rotates. Pulsars are incredibly regular and are used as a kind of cosmic clock for everything from studying gravitational waves to hypothetical navigation through the galaxy. But over time a pulsar’s rotation slows down as rotational energy radiates away thanks to its magnetic field. By observing this rate of decay, astronomers can better understand the structure of neutron stars and magnetars.

How two magnetar glitches correlate with a fast radio burst. Credit: Hu, Chin-Ping, et al

But sometimes the rate of rotation will shift suddenly. It’s known as a glitch if the rotation suddenly speeds up, and an anti-glitch if it suddenly slows down. These glitches are thought to occur when there’s some kind of sudden structural change in the neutron star, such as a starquake.

In 2022, NASA’s Nuclear Spectroscopic Telescope Array (NUSTAR) spacecraft and the Neutron Star Interior Composition Explorer (NICER) on the international space station both observed another fast radio burst from SGR 1935+2154. Together they had X-ray data on the magnetar before, during, and after the burst. The team then looked at radio observations during the same time and found a dip in the pulsar rotation rate during the burst. This implies a connection between rotation and burst.

Continue reading
  51 Hits

NASA is Trying to Fix a Problem With one of Perseverance's Instruments

There’s a problem with the Perseverance rover. One of its instruments, the laser-shooting SHERLOC, which is mounted on the end of the robotic arm, has a dust cover that is supposed to protect the instrument when it’s not in use. Unfortunately, the cover has been stuck open, and that can allow dust to collect on the sensitive optics. The cover is partially open, so the rover can’t use its laser on rock targets or collect mineral spectroscopy data. NASA engineers are investigating the problem and are hoping to devise a solution.

There are actually two dust covers on SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), which protects the instrument’s cameras, a spectrometer, and the laser. SHERLOC’s mission is to search for organic compounds and minerals that have been altered in watery environments, which may be signs of past microbial life.

The cameras include a black-and-white context camera, along with WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), a color camera for taking close-up images of rock grains and surface textures.

From images and data, engineers for Perseverance determined early this year that the one cover was stuck in a position where some of its operational modes couldn’t function. Right now, WATSON can still operate because it looks through a different aperture than the context camera, but the laser, spectrometer and context camera can’t work.

Mounted on the rover’s robotic arm, SHERLOC uses spectrometers, a laser and a camera to search for organics and minerals that have been altered by watery environments and may be signs of past microbial life. Credit: NASA

SHERLOC works by scanning a target from about 2 inches away using an internal fine-motion steering scanner mirror to raster the laser over a small (millimeter-sized) field of view. With deep ultraviolet Raman and fluorescence spectroscopy, the instrument can help differentiate types of organic materials in the object being scanned. During the course of the mission, the instrument has found a wealth of organic materials on Mars by scanning 34 rock targets, creating a total of 261 hyperspectral maps of those targets.


Continue reading
  47 Hits

Intuitive Machines’ Odysseus Lander Begins Its Moon Odyssey

Now it’s Intuitive Machines’ turn to try making history with a robotic moon landing.

Today’s launch of the Houston-based company’s Odysseus lander marks the first step in an eight-day journey that could lead to the first-ever soft landing of a commercial spacecraft on the moon. Odysseus would also be the first U.S.-built spacecraft to touch down safely on the lunar surface since Apollo 17’s mission in 1972.

The lander — which is as big as an old-fashioned British phone booth, or the Tardis time portal from the “Doctor Who” TV series — was sent spaceward from Launch Complex 39A at NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket at 1:05 a.m. ET (0605 UTC).

Liftoff was originally scheduled for the previous night, but was postponed due to concerns that arose while getting ready to load methane fuel onto the lander. The concerns were resolved, and tonight’s countdown proceeded smoothly.

After launching Intuitive Machines’ IM-1 mission, the Falcon 9’s first-stage booster flew itself back for a touchdown on SpaceX’s Landing Zone 1, not far from its Florida launch pad. Meanwhile, Odysseus separated from the rocket’s second stage and pressed onward to the next phase of its lunar odyssey.

Continue reading
  62 Hits

Engineers Design Habitats for the Moon Inspired by Terminite Mounds

Through the Artemis Program, NASA intends to send astronauts back to the Moon for the first time since the Apollo Era. But this time, they intend to stay and establish a lunar base and other infrastructure by the end of the decade that will allow for a “sustained program of lunar exploration and development.” To accomplish this, NASA is enlisting the help of fellow space agencies, commercial partners, and academic institutions to create the necessary mission elements – these range from the launch systems, spacecraft, and human landing systems to the delivery of payloads.

With NASA funding, a team of engineers from the University of Arizona College of Engineering (UA-CE) is developing autonomous robot networks to build sandbag shelters for NASA astronauts on the Moon. The designs are inspired by cathedral termite mounds, which are native to Africa and northern Australia’s desert regions. Their work was the subject of a paper presented at the American Astronautical Society Guidance, Navigation, and Control (AAS GNC) Conference, which took place from February 1st to 7th in Littleton and Breckinridge, Colorado.

The team was led by Associate Professor Jekan Thanga of the UA-CE Department of Aerospace and Mechanical Engineering, who is also the head of the Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory and the NASA-supported Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation Systems (ASTEROIDS) Laboratory. He and his team are partnering with NASA’s Jet Propulsion Laboratory and the Canadian space robotics company MDA to create the LUNAR-BRIC consortium, which is developing the technology for the Artemis Program.

Illustration of NASA astronauts and the elements of the Lunar Base Camp around the Moon’s south pole. Credit: NASA

Per the Artemis Program, NASA will land astronauts around the lunar south pole with the Artemis III mission, currently scheduled for 2026/27. By the end of the decade, they plan to build the infrastructure for long-duration stays, like the Lunar Gateway and the Artemis Base Camp. The latter element consists of a Foundation Lunar Habitat (FLH), the Lunar Terrain Vehicle (LTV), and a Habitation Mobility Platform (HMB). However, they will also need semi-permanent safe shelters while they search for optimal locations to build permanent habitats.



Continue reading
  39 Hits

Radio Telescope Confirms Free-Floating Binary Planets in the Orion Nebula

Planets orbit stars. That’s axiomatic. Or at least it was until astronomers started finding rogue planets, also called free-floating planets (FFPs). Some of these planets were torn from their stars’ gravitational grip and now drift through the cosmos, untethered to any star. Others formed in isolation.

Now, astronomers have discovered that some FFPs can orbit each other in binary relationships as if swapping their star for another rogue planet.

In 2023, astronomers working with the James Webb Space Telescope (JWST) detected 42 JuMBOs in the inner Orion Nebula and the Trapezium Cluster. JuMBOs are different than other free-floating planets. They’re Jupiter-Mass Binary ObjectS.

“The existence of these wide free-floating planetary-mass binaries was unexpected in our current theories of star and planet formation.”

From “A Radio Counterpart to a Jupiter-mass Binary Object in Orion,” by Rodriquez et al. 2024.

In that research, the JWST performed a near-infrared survey of the region with its powerful NIRCam. It looked at powerful outflows and jets from young stars, ionized circumstellar disks, and other objects in the region. Among the findings were the 42 JuMBOs. “Further papers will examine those discoveries and others in more detail,” the authors of that paper wrote.

This figure from the research shows how the infrared emissions detected by the JWST and the radio emissions detected by the VLA both have the same source. The white rectangle shows the location of the infrared emissions, and the contours and colour scale show the intensity of the radio emissions. Image Credit: Rodriguez et al. 2024.
Continue reading
  37 Hits

Passing Stars Changed the Orbits of Planets in the Solar System

The orbit of Earth around the Sun is always changing. It doesn’t change significantly from year to year, but over time the gravitational tugs of the Moon and other planets cause Earth’s orbit to vary. This migration affects Earth’s climate. For example, the gradual shift of Earth’s orbit and the changing tilt of Earth’s axis leads to the Milankovitch climate cycles. So if you want to understand paleoclimate or the shift of Earth’s climate across geologic time, it helps to know what Earth’s orbit was in the distant past.

Fortunately, Newtonian mechanics and the law of gravity work backward in time as well as forward. We can use Newtonian dynamics to predict eclipses and the trajectories of spacecraft to the outer solar system, but we can also use it to turn back the clock and map Earth’s orbit into the deep past. Within limits.

Since there is no exact solution for the orbital motion of more than two bodies, we have to run our calculations computationally. A bit of chaos comes into the works, so any uncertainty we have in the current positions and motions of large solar system bodies decreases the accuracy of our retrodiction the further back in time we go. Fortunately with radar ranging and other measurements, our computations are so accurate we can trace Earth’s orbit back 100 million years into the past with some confidence. Or so we thought because a new paper demonstrates we’ve been overlooking the gravitational effect of passing stars.

The uncertainty of Earth’s orbit 54 million years ago. Credit: N. Kaib/PSI

Most stars are too distant to have any measurable effect on Earth’s orbit. They tug upon our world no more than the distant rocks of the Oort Cloud. But now and then a star will make a close approach. Not close enough to throw our solar system into chaos, but close enough to give the solar planets a gravitational nudge. The most recent close approach was HD 7977. Right now the star is about 250 light-years away, but 2.8 million years ago it passed within 30,000 AU or half a light-year of the Sun. It may have passed as close as 4,000 AU from the Sun. At the larger distance, the gravitational effect of HD 7977 would be negligible, but at the closer end of the range, it would be significant. When you add this into the computational mix, the uncertainties of Earth’s past orbit make it difficult to be confident more than 50 million years. And that has a significant impact on paleoclimate studies.

Continue reading
  51 Hits

Saturn’s “Death Star Moon” Mimas Probably has an Ocean Too

A recent study published in Nature presents a groundbreaking discovery that Saturn’s moon, Mimas, commonly known as the “Death Star” moon due to its similarities with the iconic Star Wars space station, possesses an internal ocean underneath its rocky crust. This study was conducted by an international team of researchers and holds the potential to help planetary geologists better understand the conditions for a planetary body to possess an internal ocean, which could also possess the conditions for life as we know it. While Mimas was photographed on several occasions by NASA’s Cassini spacecraft, including a close flyby in February 2010, what was the motivation behind this recent study regarding finding an internal ocean on Mimas?

Dr. Gabriel Tobie, who is a planetary scientist at Nantes Université in France and a co-author on the study, tells Universe Today, “One of the initial motivations to study Mimas was to understand why it is so different from the neighboring moon, Enceladus, which is characterized by a very active surface with direct communication with a global surface ocean. On Enceladus, we know that all the observed activity is controlled by tidal forces generated by Saturn. Mimas is closer to Saturn and should normally experience even more intense tidal forces. So why Mimas’ lack sign of activity?”

Discovered by William Herschel on September 17, 1789, Mimas is best known for its Death Star appearance due to Herschel Crater, which spans 139 kilometers (86 miles) in diameter, or just over one-third the diameter of Mimas at 396 kilometers (246 miles). Unlike other ocean worlds like Europa and Enceladus, whose surfaces are largely devoid of craters due to the frequent resurfacing from their respective internal oceans, the surface of Mimas possesses countless craters with no indications of resurfacing. Therefore, the debate for Mimas possessing an internal ocean has raged for years, including a 2014 study published in Science and a 2017 study published in JGR: Planets.

2022 video discussing the possibility of an ocean on Mimas based on research at the time.

Dr. Tobie continues by telling Universe Today, “It was initially thought that Mimas remained frozen since its formation and that the conditions to initiate ice melting in its interior were never met. This new finding we report in this study shows that Mimas in fact is not that different than Enceladus. It also has a global ocean, but in contrast to Enceladus, such an ocean was formed very recently, explaining the lack of surface activity.”

After analyzing data from NASA’s Cassini, the researchers concluded that an internal ocean exists on the heavily cratered Mimas approximately 20-30 kilometers (12-18 miles) beneath its surface, forming less than 25 million years ago, which is young in geologic terms. Additionally, the team concluded the juncture where the internal ocean and ice interact reached less than 30 kilometers (18 miles) from the surface only 2-3 million years ago, indicating the ocean is potentially still developing and growing. Therefore, what implications does finding an ocean on Mimas have for other potential ocean worlds in our solar system?

Continue reading
  35 Hits

Could We Live Without Kilonovae?

It’s a classic statement shared at many public outreach events…’we are made of stardust’. It is true enough that the human body is mostly water with some other elelments like carbon which are formed inside stars just like the Sun. It’s not just common elements like carbon though for we also have slighly more rare elements like iodine and bromine. They don’t form in normal stars but instead are generated in collisions between neutron stars!  It poses an interesting question, without the neutron star merger event; ‘would we exist?’

Among the plethora of elements in the human body, Iodine – which is part of the thyroid hormone system and various physiological functions such as grown, development, body temperature regulation and heart rate and bromine which is responsible for tissue development and structural integrity. These elements are formed in systems where two neutron stars are orbiting each other but lose energy through the emission of gravity waves. As the system loses energy, the neutron stars spiral closer and closer to each other culminating in a collision and the creation of iodine and bromine. 

Neutron stars are formed when a massive star runs out of its fuel and undergoes collapse. As the core of the star collapses, the pressure and temperatures increase compressing all the protons and electrons into a neutron. If the mass falls within about 1 to 2 times the mass of the Sun then the collapse halts and a neutron star is formed. These objects can result in a stellar corpse the size of a city- approximately 20 km across. A sugar cube sized piece of neutron star material would weight in at 1 trillion kilograms here on Earth. that’s equivalent to the mass of a mountain! For those stars with more mass then the collapse continues to become a stellar mass blackhole. 

When neutron stars collide as described earlier in this article, the event is known as a kilonovae. Certainly if Earth happened to live in the blast zone then it would most definitely not be conduscive to live but, the elements synthesized are key elements supporting our very existience. The process is known as the rapid neutron-capture, or the r-process for short. Seed nuclei capture a series of neutrons just in time to avoid radioactive decay before another neutron is captured. 

The paper that was written by John Ellisa, Brian D. Fields and Rebecca Surman was published recently and it articulates the importants of the elemtns to human physiology. It also explores the possibility of searching for samples in the lunar surface that may have been depsotied by a recent kilonova explosion. 

Continue reading
  69 Hits

The Vera Rubin’s Keen Eye On Our Solar System Will Inspire Future Missions

When the interstellar object (ISO) Oumuamua appeared in our Solar System in 2017, it generated a ton of interest. The urge to learn more about it was fierce, but unfortunately, there was no way to really do so. It came and went, and we were left to ponder what it was made of and where it came from. Then, in 2019, the ISO comet Borisov came for a brief visit, and again, we were left to wonder about it.

There’s bound to be more of these ISOs traversing our Solar System. There’s been talk of having missions ready to go to visit one of these interstellar visitors in the future, but for that to happen, we need advance notice of its arrival. Could the Vera Rubin Observatory tell us far enough in advance?

No mission leaves the launch pad without detailed planning, and detailed planning depends on observations. Ground-based observations laid the foundation for our forays into the Solar System. NASA missions like OSIRIS-REx, Lucy, and Psyche are simply impossible without detailed ground observations preparing the way.

Soon, one of our most powerful and unique observatories will begin operations, the Vera Rubin Observatory. Its main activity will be the Legacy Survey of Space and Time (LSST.) The LSST will image our Solar System in far more detail than ever before, and it’ll do it continuously for a decade. The wealth of data that flows from those observations will be a massive benefit to mission planning and will probably inspire missions that we haven’t dreamed of yet.

The VRO’s Legacy Survey of Space and Time is based on the observatory’s 8.4 meter, wide-angle primary mirror and its ability to change targets in only five seconds. Attached to it is the world’s largest digital camera, a 3.2 gigapixel behemoth. The VRO will image the entire available night-time sky every few nights.


Continue reading
  59 Hits

What Happened to All Those Boulders Blasted into Space by DART?

It was a $325 million dollar project that was intentionally smashed to smithereens in the interest of one day, saving humanity. The DART mission (Double Asteroid Redirection Test) launched in November 2021 on route to asteroid Dimorphos. Its mission was simple, to smash into Dimorphos to see if it may be possible to redirect it from its path. On impact, it created a trail of debris from micron to meter sized objects. A new paper analyses the debris field to predict where they might end up. 

Asteroid Dimorphos orbits around its host asteroid, Didymos and together they form a binary asteroid system. Neither asteroid poses a threat to Earth but their gave a fabulous opportunity to test technology for defending Earth from potential impactors. On 11 October NASA announced that DART successfully altered the orbit of Dimorphos showing that the kinetic energy of a spacecraft could indeed alter the trajectory of a potential threat. 

DART hit Dimorphos in an almost head on collision and the resulting ejecta plume travelled at approximately 2km/s. The plume had been observed by the Les Makes Observatory and with the Hubble Space Telescope. The debris contained material from dust sized particles to meteor and even boulder sized objects. Just before the impact, the CubeSat LICIACube was released from DART so that it could offer some long term monitoring of the debris field. 

Observations that followed showed delicate structures within the ejecta with a diffuse cloud that quickly transformed into a cone shaped formation with a tail. That tail, just like the tail of a comet was then pushed away from the asteroid system by the solar radiation pressure. Using ground based imagery, the mass and velocity of the ejected particles was established. 

The analysis of ejecta enabled modelling to be undertaken to estimate that approximately 3% of all ejected boulders would remain in orbit after 83 days (within the scope of the captured data). This estimation was in line with the pre-impact simulations over a 60 day period. By varying the parameters of the simulation they also revealed that 5% of 10cm sized particles escaping with a velocity of 0.12 and 0.18m/s would remain in orbit around the system after a 60 day period of time, similar again to the observations. 

Continue reading
  61 Hits

Measuring Distances in the Universe With Fast Radio Bursts

Now and then there is a bright radio flash somewhere in the sky. It can last anywhere from a few milliseconds to a few seconds. They appear somewhat at random, and we still aren’t sure what they are. We call them fast radio bursts (FRBs). Right now the leading theory is that they are caused by highly magnetic neutron stars known as magnetars. With observatories such as CHIME we are now able to see lots of them, which could give astronomers a new way to measure the rate of cosmic expansion.

The rate of cosmic expansion is described by the Hubble parameter, which we can measure to within a few percent. Unfortunately, our various methods of measure are now so precise their uncertainties don’t overlap. This contradiction in values is known as the Hubble tension. Several re-evaluations of our methods have ruled out systematic error, so astronomers look to new independent ways to measure the Hubble parameter, which is where a new study comes in.

The paper looks at using FRBs as a Hubble measure. For light from an FRB to reach us, it needs to travel millions of light-years through the diffuse intergalactic and interstellar medium. This causes the frequency of the light to spread out. The amount of spectral spreading is known as the Dispersion Measure (DM), and the greater the DM the greater the distance. So we know the distance to FRBs. But to measure cosmic expansion, we also need a second distance measure, and here the paper proposes using gravitational lensing.

The geometry of an FRB measurement. Credit: Tsai, et al

If the FRB light path passes relatively close to a massive object such as a star, the light can be gravitationally lensed around the object. From the width of the lensing, we have an idea of its relative distance to the FRB source. When the FRB light passes from the intergalactic medium to the more dense interstellar medium of our galaxy, there is a brightening effect known as scintillation, which gives us another distance measure A bit of geometry then allows us to calculate the Hubble parameter.

Based on their calculations, the authors estimate that a single lensed FRB observation would allow them to pin down the Hubble parameter to within 6% accuracy. With 30 or more events, they should be able to increase their precision to a fraction of a percent uncertainty. This would put it on par with other methods. This should be achievable given current and planned FRB telescopes.

Continue reading
  46 Hits

CERN Wants to Build an Enormous New Atom Smasher: the Future Circular Collider

One of my favourite science and engineering facts is that an underground river was frozen to enable the Large Hadron Collider (LHC) to be built! On its completion, it helped to complete the proverbial jigsaw of the Standard Model with is last piece, the Higgs Boson. But that’s about as far as it has got with no other exciting leaps forward in uniting gravity and quantum physics. Plans are now afoot to build a new collider that will be three times longer than the LHC and it will be capable of smashing particles together with significantly more energy. 

In the past few decades, particle colliders have become a key tool for unraveling the mysteries of the universe at the fundamental level. The Large Hadron Collider (LHC), was a game changer and, with an amazing 27km circumference became the world’s most powerful collider. There are now plans to increase the number of collisions to try and improve its input to understanding the Universe but even with this ‘High Luminosity’ phase, CERN (European Council for Nuclear Research) wants to go even further and build a new collider!

If colliders like LHC are to play a part in high energy physics over the coming years then energy thresholds need to pushed beyond current capabilities. The Future Circular Collider (FCC) study has looked into various collider designs, envisaging a research infrastructure housed within a 100km underground tunnel. This ambitious project is promising a physics program that will take high energy research into the next century. 

There are a number of challenges that face the design and engineering of the new tunnel however; it must steer clear of geologically interesting areas, optimise future collider efficiency, allow for connectivity with the LHC, and adhere to social and environmental impacts of the surface buildings and infrastructure. Choosing ‘where to put it’ seems to be quite the challenge so a range of layout options are being considered, guided by CERN’s intent to avoid the impact on the area.

Within the FCC tunnel (which looks like it will be placed beneath ring-shaped underground tunnel located beneath Haute-Savoie and Ain in France and Geneva in Switzerland) will be two colliders that will work together sequentially. The first phase is scheduled for inauguration around mid-2040s and comprises an electron-positron collider (FCC-ee). The hope is that it will give unparalleled precision measurements and unveil physics beyond the standard model. Following hot on its heels will be the proton-proton collider (FCC-hh) which will surpass the energy capability of LHC eightfold!

Continue reading
  47 Hits

Webb Can Directly Test One Theory for Dark Matter

What is it about galaxies and dark matter? Most, if not all galaxies are surrounded by halos of this mysterious, unknown, but ubiquitous material. And, it also played a role in galaxy formation. The nature of that role is something astronomers are still figuring out. Today, they’re searching the infant Universe, looking for the tiniest, brightest galaxies. That’s because they could help tell the tale of dark matter’s role in galactic creation.

An international team of astronomers led by UCLA’s Smadar Naoz is doing simulations of early galaxy formation. Their computer programs track the circumstances of galactic births not long after the Big Bang. These “hot off the press” computer models include some new wrinkles. They take into account previously neglected interactions between dark matter and the primordial “stuff” of the Universe. That would be hydrogen and helium gas. The result of the simulations: tiny, bright galaxies that formed more quickly than in computer models that didn’t include those motions. Now astronomers just need to find them, using JWST, in an effort to see if their theories of dark matter hold up.

How would interactions between baryonic matter and dark matter make a difference? Here’s one likely story: in the early Universe, clouds of gas moved at supersonic speeds past clumps of dark matter. It bounced off the dark matter. Eventually, after millions of years, the gaseous material fell back together to form stars in a blast of star birth. The team’s simulations track the formation of those galaxies right after the Big Bang.

A composite model of matter distribution in the Universe (with dark matter overlay) in a galaxy formation simulation made by the TNG Collaboration.

Naoz’s team thinks that the existence of those smaller, brighter, more distant galaxies could confirm the so-called “cold dark matter” model. It suggests that the Universe was in a hot dense state containing only gases after the Big Bang. Over time, it evolved to a lumpy distribution of galaxies (and eventually galaxy clusters). Along the way, stars and galaxies formed, but the earliest steps likely depend on gravitational interaction with dark matter. If the supersonic interactions that Naoz’s team modeled actually happened, then those little galaxies would be the result.

Artist conception of starbursting galaxies in the early universe. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds.  Early gas clouds bounced past dark matter clumps, only to clump together again under dark matter's gravity -- sparking off star formation. Credit: Aaron M. Geller/Northwestern/CIERA + IT-RCDS
This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-alpha emission. Scientists look to this and other young galaxies to understand the role that dark matter plays in early cosmic history.
Continue reading
  31 Hits

“Seeing” the Dark Matter Web That Surrounds the Coma Cluster

According to our predominant cosmological models, Dark Matter makes up the majority of mass in the Universe (roughly 85%). While it is not detectable in visible light, its influence can be seen based on how it causes matter to form large-scale structures in our Universe. Based on ongoing observations, astronomers have determined that Dark Matter structures are filamentary, consisting of long, thin strands. For the first time, using the Subaru Telescope, a team of astronomers directly detected Dark Matter filaments in a massive galaxy cluster, providing new evidence to test theories about the evolution of the Universe.

The team consisted of astronomers from the Department of Astronomy and the Center for Galaxy Evolution Research (CGER) at Yonsei University and the Department of Physics and Astronomy at the University of California Davis (UC Davis). Their results appeared in a paper, “Weak-lensing detection of intracluster filaments in the Coma cluster,” on January 5th, 2024, in Nature Astronomy. As the team explained, Subaru revealed the terminal ends of dark matter filaments in the Coma Cluster spanning millions of light years.

Hubble Space Telescope offers a cosmic cobweb of galaxies and invisible dark matter in the cluster Abell 611. Credit: ESA/Hubble, NASA, P. Kelly, M. Postman, J. Richard, S. Allen

Our accepted cosmological models predict that galaxy clusters grow at the intersection of Dark Matter filaments that make up the large-scale structure of the Universe (“cosmic web”) and extend for tens of millions of light-years. While this hypothesis is supported by observations of the distribution of galaxies and gas (i.e., baryonic or “visible” matter) in the Universe, there have been no direct detections of the dark matter component of intracluster filaments (ICFs) until now. Using the Subaru Telescope, the Yonsei-led team searched for signs of dark matter filaments in the Coma Cluster.

This cluster is located 321 million light-years away in the direction of the constellation Coma Berenices and contains over 1,000 identified galaxies. It is also one of the largest and closest galaxy clusters, which makes it a good candidate for looking for faint signs of Dark Matter. However, its proximity also makes it difficult to observe the entire cluster. But thanks to the Subaru Telescope’s combination of high sensitivity, high resolution, and wide field of view, the team was able to detect weak-lensing effects that indicated the presence of ICFs in the Coma Cluster.

Continue reading
  37 Hits

NASA Launches a New Mission to Study the Effects of Climate Change

NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite successfully launched and reached on Thursday, February 10th. The mission took off from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida, at 1:33 am EST 10:33 pm (PST) atop a SpaceX Falcon 9 rocket. About five minutes after launch, NASA confirmed that ground stations on Earth had acquired a signal from the satellite and were receiving data on its operational status and capabilities post-launch. For the next three years, the mission will monitor Earth’s ocean and atmosphere and study the effects of climate change.

Specifically, PACE was designed to study how the ocean and atmosphere exchange carbon dioxide and how microscopic particles (aerosols) in our atmosphere might fuel phytoplankton growth in the ocean. The data it accumulates will be used to identify the extent and duration of harmful algae blooms and extend NASA’s long-term observations of our changing climate. As NASA Administrator Bill Nelson expressed in an agency press release:

“Congratulations to the PACE team on a successful launch. With this new addition to NASA’s fleet of Earth-observing satellites, PACE will help us learn, like never before, how particles in our atmosphere and our oceans can identify key factors impacting global warming. Missions like this are supporting the Biden-Harris Administration’s climate agenda and helping us answer urgent questions about our changing climate.”

The PACE satellite deploying in orbit. Credit: NASA

The satellite will perform oceanic measurements using its hyperspectral ocean color instrument, allowing researchers to study oceans and bodies of water in the visible, ultraviolet, and near-infrared wavelengths. This will enable scientists to track the distribution of phytoplankton and determine which communities are present on a daily, global scale from space. This will be a first for scientists and coastal resource managers, who will use the data to forecast the health of fisheries, track harmful algal blooms, and identify changes in the marine environment.


Continue reading
  45 Hits

The Event Horizon Telescope Zooms in on a Black Hole's Jet

Although supermassive black holes are common throughout the Universe, we don’t have many direct images of them. The problem is that while they can have a mass of millions or billions of stars, even the nearest supermassive black holes have tiny apparent sizes. The only direct images we have are those of M87* and Sag A*, and it took a virtual telescope the size of Earth to capture them. But we are still in the early days of the Event Horizon Telescope (EHT), and improvements are being made to the virtual telescope all the time. Which means we are starting to look at more supermassive black holes.

The latest observations focus on a black hole region known as 3C 84, or Perseus A. It is a radio-bright source in a galaxy more than 200 million light-years away. Even the latest iteration of the EHT can’t resolve the horizon glow of the black hole as we’ve done with M87* and Sag A*, but it can see the bright region surrounding the black hole, where magnetic fields are particularly intense.

A wide multi-wavelength composite view of NGC 1275. Credit: Marie-Lou Gendron-Marsolais (Université de Montréal), Julie Hlavacek-Larrondo (Université de Montréal), Maxime Pivin Lapointe

The 3C 84 black hole is located in the galaxy NGC 1275, which is part of the Perseus cluster. The galaxy is not just distant, it also has a central region rich in dust, which shrouds the black hole. Optical light can’t penetrate the region, but radio light can. The Event Horizon Telescope can also capture the polarization of radio light coming from the area. This is important because charged particles within a strong magnetic field emit polarized light. By mapping this polarization astronomers can study magnetic fields.

One focus of this work is to see how supermassive black holes can generate powerful jets that stream from the black hole at nearly the speed of light. Magnetic fields are key. As ionized matter falls into a black hole it can bring with it strong magnetic fields. These fields can pin to the accretion disk of a black hole, which intensifies fields in the region that it becomes difficult for the black hole to capture more matter. This is known as a magnetically arrested disk.

One idea is that as the magnetically arrested disk rotates around the black hole, magnetic field lines become twisted, winding ever tighter and trapping magnetic energy. The release of this energy through magnetic realignment could power the formation of ionized jets. While such a magnetic realignment hasn’t been observed, this study shows that we might be able to capture such an event.

Continue reading
  42 Hits

Fragments From That Asteroid That Exploded Above Berlin Have Been Recovered and They're Really Special

On January 21st, 2024, a meter-sized asteroid (2024 BX1) entered Earth’s atmosphere and exploded over Berlin at 12:33 am UTC (07:45 pm EST; 04:33 pm PST). Before it reached Earth, 2024 BX1 was a Near-Earth Asteroid (NEA) with an orbit that suggests it was part of the Apollo group. The fragments have since been located by a team of scientists from the Freie Universität Berlin, the Museum für Naturkunde (MfN), the German Aerospace Center (DLR), the Technische Universität Berlin, and the SETI Institute and identified as a rare type of asteroid known as “aubrites.”

The name aubrites comes from the village of Aubrés in France, where a similar meteorite fell on September 14th, 1836. The team responsible for recovering samples of this latest meteorite was led by SETI Institute meteor astronomer Dr. Peter Jenniskens and MfN researcher Dr. Lutz Hecht. They were joined by a team of staff and students from the MfN, the Freie Universität Berlin, the DLR, and the Technische Universität Berlin days after the meteor exploded in the sky. Together, they found the meteor fragments in the fields just south of the village of Ribbeck, about 50 km (31 mi) west of Berlin.

Aubrite meteorite from asteroid 2024 BX1, photographed at the Museum für Naturkunde Berlin by Laura Kranich, a Freie Universität MSc student and member of the Arbeitskreis Meteore, who participated in the search and found this meteorite near the village of Ribbeck, Germany. Credit: SETI Institute

Finding the fragments was a major challenge because of the peculiar appearance of aubrites, which resemble rocks like any other from a distance but are quite different to look at up close. Whereas other types of meteors have a thin crust of black glass caused by the extreme heat generated by passing through the atmosphere, aubrites have a mostly translucent glass crust. Christopher Hamann, a researcher from the Museum für Naturkunde, was involved in the initial classification and participated in the search. As he related in a SETI Institute press release:

“Aubrites do not look like what people generally imagine meteorites to look like. Aubrites look more like a gray granite and consist mainly of the magnesium silicates enstatite and forsterite. It contains hardly any iron and the glassy crust, which is usually a good way to recognize meteorites, looks completely different than that of most other meteorites. Aubrites are therefore difficult to detect in the field.”

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.
Continue reading
  67 Hits

The Seeming Impossibility of Life

The number of near misses, false starts, and legitimate disasters that have befallen our species since the day we took our first upright steps all those generations ago is too large to count and could honestly take up this entire book. I’ll give us humans this much, though: we’re survivors, through and through.

We are, to put it bluntly, remarkable. There is nothing in this cosmos that even begins to approach anything resembling the complexity of the human brain. There is no other world that we have discovered, within our solar system or without, that can support the dizzying array of chemical reactions that we call life, let alone consciousness.

Sure, with enough planets around enough stars within enough galaxies, life is probably bound to happen one way or another, but it appears that life only happened here, once, billions of years ago, when it didn’t appear – or was snuffed out – even in our own solar backyard.

Even our planet is special. Take a look at the other planets of the solar system. If doesn’t matter if you’re using a backyard telescope or the latest NASA robotic gear, the answer is always the same. While every planet looks and acts (and probably smells) different from all the rest, they all share one thing in common: they’re dead.

Lifeless. Uninhabitable. Inhospitable. Barren balls of cold rock. Barren balls of molten rock. Barren balls of exceedingly hot rock buried under thick layers of atmosphere. Barren.

Continue reading
  168 Hits

Water Vapor Found in the Atmosphere of a Small Exoplanet

A recent study published in The Astrophysucal Journal Letters discusses the detection of water within the atmosphere of GJ 9827 d, which is a Neptune-like exoplanet located approximately 97 light-years from Earth, using NASA’s Hubble Space Telescope (HST), and is the smallest exoplanet to date where water has been detected in its atmosphere. This study was conducted by an international team of researchers and holds the potential to identify exoplanets throughout the Milky Way Galaxy which possess water within their atmospheres, along with highlighting the most accurate methods to identify the water, as well.

For the study, the researchers analyzed data using Hubble’s Wide Field Camera 3 (WFC3), which is a fourth-generation ultraviolet imaging spectrograph (UVIS)/Infrared (IR) imager that replaced the Wide Field Planetary Camera 2 during Servicing Mission 4, which was conducted by STS-125 in May 2009 and was the fifth and final servicing mission for Hubble. The researchers used WFC3 to observe 11 transits of GJ 9827 d, which orbits its star in 6.2 days, over a period of three years and identified what they hypothesize to be water within the exoplanet’s atmosphere. While the team stops short at confirming the existence of water, they eliminated the likelihood that the results were from starspots after analyzing data from NASA’s Kepler/K2 mission.

Image of NASA’s Hubble Space Telescope, which is about the size of a school bus, obtained by the STS-125 crew on May 19, 2009, after completion of Servicing Mission 4. (Credit: NASA)

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said Dr. Björn Benneke, who is an Associate Professor and the Head of the Astronomy Group within the Department of Physics at Université de Montréal and lead author of the study. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets.”

While the team does not definitively confirm the existence of water within GJ 9827 d’s atmosphere, they do have a series of competing hypotheses pertaining to how and why water could exist: the atmosphere is rich in hydrogen like most gaseous planets but with traces of water, which the team was fortunate enough to detect; or GJ 9827 d is a rocky planet surrounded by a water vapor envelope. However, the team notes that recent studies of GJ 9827 d have suggested it could lose more than half of its atmosphere over the course of one billion years, meaning GJ 9827 d isn’t likely to possess an atmosphere dominated by hydrogen.


Continue reading
  128 Hits

What Could the Extremely Large Telescope See at Proxima Centauri's Planet?

Proxima Centauri B is the closest exoplanet to Earth. It is an Earth-mass world right in the habitable zone of a red dwarf star just 4 light-years from Earth. It receives about 65% of the energy Earth gets from the Sun, and depending on its evolutionary history could have oceans of water and an atmosphere rich with oxygen. Our closest neighbor could harbor life, or it could be a dry rock, but is an excellent target in the search for alien life. There’s just one catch. Our usual methods for detecting biosignatures won’t work with Proxima Centauri B.

Most exoplanets are discovered through the transit method, where a planet regularly passes in front of its star from our point of view. We see the recurring dip in a star’s brightness, and we know the planet is there. For transiting exoplanets, we can look for changes in the spectrum of the star as the planet transits. Some of the starlight passes through an exoplanet’s atmosphere, and some wavelengths get absorbed by the atmosphere. By looking at the pattern of absorption, we can fingerprint different molecules. This is how we’ve detected the presence of water, carbon dioxide, and other molecules in exoplanet atmospheres.

But Proxima Centauri B isn’t a transiting planet. It was discovered by a different method known as Doppler spectroscopy. When we look at the light from Proxima Centauri, we can see its spectrum redshift and blueshift slightly over time. The gravitational pull of Proxima Centauri B makes the star wobble slightly. So we know the exoplanet is there, and have a good idea of its size and mass, but since it doesn’t transit its star we can’t observe its atmospheric absorption spectrum.

But a new study argues there is another way we might find life, using the reflection of starlight off the planet’s atmosphere. In principle the idea is simple. Rather than looking for light passing directly through the atmosphere, look instead for light that has reflected off the planet directly. We’ve done this for planets such as Mars and the outer planets, which don’t transit the Sun, so we could do it for exoplanets as well.

The problem is that reflected starlight from a planet is tiny compared to the radiance of the star itself. Detecting the reflected light of a planet is like capturing the light of a firefly flittering near the edge of a spotlight. So astronomers have used masks to block the central brilliance of a star and see its family of planets. We have done this to directly observe large gas planets orbiting stars, but not Earth-sized worlds.

Continue reading
  184 Hits

SpaceZE.com