Aliens are big in the news recently, fueled by congressional hearings about Unidentified Anomalous Phenomena (UAPs), formally known as UFOs. But while the idea of aliens visiting Earth may be exciting, the better bet is still the idea that aliens might exist on distant worlds. We already know potentially habitable planets are common and intelligent life has arisen on at least one world, so why not many? But after 60 years of searching for evidence of extraterrestrials “out there,” we’ve found nothing. So what does that tell us?
Space News & Blog Articles
Venus and Earth have several things in common. Both are terrestrial planets composed of silicate minerals and metals that are differentiated between a rocky mantle and crust and a metal core. Like Earth, Venus orbits within our Sun’s circumsolar habitable zone (HZ), though Venus skirts the inner edge of it. And according to a growing body of evidence, Venus has active volcanoes on its surface that contribute to atmospheric phenomena (like lightning). However, that’s where the similarities end, and some rather stark differences set in.
It’s every space mission’s nightmare: losing contact with the spacecraft. In the best case, you recover it right away. Worst case, you never hear from your hardware again. On July 21, controllers lost contact with Voyager 2, out in the depths of space. Now they’re waiting for a reset to catch Voyager 2’s next message when it “phones home”.
Humanity has been on an asteroid-finding spree as of late. Those close to Earth, known as Near Earth Objects (NEOs), have been particularly interesting for two reasons. One is they offer potentially lucrative economic opportunities with asteroid mining. The other is they are potentially devastating if they hit the Earth, so we’d like to find them with some advance warning. Those that fall into the latter category are known as potentially hazardous asteroids, or PHAs. Now, thanks to some ingenious programmers from the University of Washington, we have a new algorithm to detect them.
A collaboration of engineers from NASA and academia recently tested hybrid printed electronic circuits near the edge of space, also known as the Kármán line. The space-readiness test was demonstrated on the Suborbital Technology Experiment Carrier-9, or (SubTEC-9), sounding rocket mission, which was launched from NASA’s Wallops Flight Facility on April 25 and reached an altitude of approximately 174 kilometers (108 miles), which lasted only a few minutes before the rocket descended to the ground via parachute.
In 2026, the European Space Agency (ESA) will launch its next-generation exoplanet-hunting mission, the PLAnetary Transits and Oscillations of stars (PLATO). This mission will scan over 245,000 main-sequence F, G, and K-type (yellow-white, yellow, and orange) stars using the Transit Method to look for possible Earth-like planets orbiting Solar analogs. In keeping with the “low-hanging fruit” approach (aka. follow the water), these planets are considered strong candidates for habitability since they are most likely to have all the conditions that gave rise to life here on Earth.
A recent study published in the Proceedings of the National Academy of Sciences (PNAS) examines what are known as dark stars, which are estimated to be much larger than our Sun, are hypothesized to have existed in the early universe, and are allegedly powered by the demolition of dark matter particles. This study was conducted using spectroscopic analysis from NASA’s James Webb Space Telescope (JWST), and more specifically, the JWST Advanced Deep Extragalactic Survey (JADES), and holds the potential to help astronomers better understand dark stars and the purpose of dark matter, the latter of which continues to be an enigma for the scientific community, as well as how it could have contributed to the early universe.
From the dust, we rise. Vortices within the disks of young stars bring forth planets that coalesce into worlds. At least that’s our understanding of planetary evolution, and new images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) further support this.
When will we find evidence for life beyond Earth? And where will that evidence be found? University of Arizona astronomer Chris Impey, the author of a book called “Worlds Without End,” is betting that the first evidence will come to light within the next decade or so.
Supermassive black holes haunt the cores of many galaxies. Yet for all we know about black holes (not nearly enough!), the big ones remain a mystery, particularly when they began forming. Interestingly, astronomers see them in the early epochs of cosmic history. That raises the question: how did they get so big when the Universe was still just a baby?
In 1985, the physicist Heinz Pagels wrote that star birth was a “veiled and secret event.” That’s because the stellar crêches hide the action. But, ever since the advent of infrared astronomy, astronomers have been able to lift that veil. In particular, the Hubble Space Telescope has studied these systems and now, the Webb Telescope (JWST) gives regular detailed views of stellar nurseries.
In capitalist societies, resources are primarily directed at solving problems, and one of the biggest hurdles facing space development is its ability to directly solve the problems of the majority of humanity back on Earth. So far, we’ve taken some cautious commercial steps, primarily through satellite monitoring and communication technologies. Some think that space tourism is the “killer app” that will kickstart the commercialization of space. But to really have a sustainable business model, humans need to make something in space that they are unable to make on Earth. This article is the first in a series where we will look at what those possible first manufactured goods are. And in this case, the good isn’t something that might immediately be thought of as high-tech.
What do you get when a hot young world orbits a wildly unstable young red dwarf? For AU Microsopii b, the answer is: flares from the star tearing away the atmosphere. That catastrophic loss happens in fits and starts, “hiccuping” out its atmosphere at one point and then losing practically none the next.
We have discovered more than 5,400 planets in the universe. These worlds range from hot jovians that closely orbit their star to warm ocean worlds to cold gas giants. While we know they are there, we don’t know much about them. Characteristics such as mass and size are fairly straightforward to measure, but other properties such as temperature and atmospheric composition are more difficult. So the next generation of telescopes will try to capture that information, including one proposed telescope from the Chinese National Space Administration.
On a basic level, a star is pretty simple. Gravity squeezes the star trying to collapse it, which causes the inner core to get extremely hot and dense. This triggers nuclear fusion, and the heat and pressure from that pushes back against gravity. The two forces balance each other while a star is in its main sequence state. Easy peasy. But the details of how that works are extremely complex. Modeling the interior of a star accurately requires sophisticated computer models, and even then it can be difficult to match a model to what we see on the surface of a star. Now a new computer simulation is helping to change that.
NASA plans to send astronauts to Mars in the coming decade. This presents many challenges, not the least of which is the distance involved and the resulting health risks. To this end, they are investigating and investing in many technologies, ranging from life support and radiation protection to nuclear power and propulsion elements. A particularly promising technology is Nuclear-Thermal Propulsion (NTP), which has the potential to reduce transit times to Mars significantly. Instead of the usual one-way transit period of six to nine months, a working NTP system could reduce the travel time to between 100 and 45 days!
The Royal Astronomical Society of Canada’s observatory in Hamilton, Ontario was vandalized earlier this month, with at least $100,000 in damage to equipment and facilities.
There are so many asteroids. Just in our own backyard, we’ve found over 30,000 Near Earth asteroids. Exploring them using traditional methods and launching a custom-made mission, like Hayabusa or OSIRIS-REx, would almost certainly be cost-prohibitive. So how can we assess whether they would make good targets for early asteroid mining missions? Ground imaging can help, but there’s nothing like being on-site on one of these asteroids to get a sense of what they are made of. Those visits would be much easier if we mass-produced the Asteroid Mobile Imager and Geologic Observer (AMIGO).
Olympus Mons, located at the northwest edge of the Tharsis Montes region on Mars, was appropriately named. Based on readings obtained by the Mars Orbiter Laser Altimeter (MOLA), an instrument aboard NASA’s Mars Global Surveyor (MGS), this mountain is the tallest in the Solar System, standing 21.9 km (13.6 mi) tall – about two and a half times the height of Mount Everest (8.85 km; 5.5 mi). According to current estimates, this extinct shield volcano formed during Mars’ Hesperian Period (ca. 3.7 to 3 billion years ago), which was characterized by widespread volcanic activity and catastrophic flooding.
Three former insiders who have played a role in dealing with UFOs — or as they’ve now come to be known, unidentified anomalous phenomena — say the U.S. military knows more than what it’s been telling lawmakers about encounters with potentially alien technology.
Gamma Ray Bursts (GRBs) are the most powerful astrophysical phenomena in the universe. For a span of seconds to a few minutes, they can be the most powerful high-energy event in the sky, shining across billions of light years. But recently astronomers detected a GRB that lasted more than a thousand seconds, with two blasts of gamma rays that triggered the Fermi Gamma Ray Burst Monitor. It’s such a strange cosmic event that astronomers aren’t sure what caused it, but they do have a possible idea.

