At first glance, the universe and night sky seem largely unchanging. The reality is very different, even now, a gas cloud is charging toward the Milky Way Galaxy and is expected to crash into us in 27 million years. A team of astronomers hoping to locate the exact position of the expected impact site have been unsuccessful but have accidentally measured the thickness of the Milky Way! Analysing radio data, they have been able to deduce the thickness of the inner and outer regions and discovered a dramatic difference between the two.
Space News & Blog Articles
At our current level of knowledge, many exoplanet findings take us by surprise. The only atmospheric chemistry we can see with clarity is Earth’s, and we still have many unanswered questions about how our planet and its atmosphere developed. With Earth as our primary reference point, many things about exoplanet atmospheres seem puzzling in comparison and generate excitement and deeper questions.
In 2021, NASA’s Perseverance rover landed in the Jezero Crater on Mars. For the next three years, this astrobiology mission collected soil and rock samples from the crater floor for eventual return to Earth. The analysis of these samples is expected to reveal much about Mars’ past and how it transitioned from being a warmer, wetter place to the frigid and desiccated place we know today. Unfortunately, budget cuts have placed the future of the proposed NASA-ESA Mars Sample Return (MSR) mission in doubt.
The search for life has to be one of the most talked about questions in science. The question is, what do you look for? The Odysseus lunar lander has recently detected signs of a technologically advanced civilisation…on Earth! The lander is equipped with an instrument called ROLSES which has probed the radio emissions from Earth as if it was an exoplanet to se if it could detect signs of life!
Satellites in orbit use rocket propulsion to maintain their altitude. These engines require fuel to power their chemical or ion engines but when the fuel runs out, the orbit slowly erodes with the satellite re-entering the atmosphere. A new type of electrical propulsion has been developed that has no need for onboard fuel. Instead it syphons air particles out of the atmosphere and accelerates them to provide thrust. Much like an ion engine but this time, the fuel source is air making it ideal for low Earth orbits.
Planet Earth is in for some amazing geomagnetic storms in the next year or so. That’s because it’s in a period of peak activity called “solar maximum” (solar max, for short). But, what happens at other planets, especially Mars, during this time? Mars mission scientists got a sneak peek at the effect of a major solar storm thanks to one hitting the Red Planet on May 20th, 2024.
So far, scientists have found around 34,000 near-Earth asteroids (NEAs) that could serve as humanity’s stepping stone to the stars. These balls of rock and ice hold valuable resources as we expand throughout the solar system, making them valuable real estate in any future space economy. But the 34,000 we know of only make up a small percentage of the total number of asteroids in our vicinity – some estimates theorize that up to 1 billion asteroids larger than a modern car exist near Earth. A project from the Trans Astronautics Corp (TransAstra), an asteroid-hunting start-up based in California, hopes to find the missing billion.
Apollo 8 astronaut William Anders, who took the iconic “Earthrise” photo of our home planet from the Moon in 1968, was killed on June 7, 2024. Anders was flying alone in his Beechcraft T-34 Mentor aircraft when the plane plunged into the waters off the San Juan Islands in Washington state. Anders was 90.
It’s been known for years that there are large quantities of water ice locked up in the Martian poles. Around the equator however it is a barren dry wasteland devoid of any surface ice. Recent observations of Mars have discovered frost on the giant shield volcanoes but it only appears briefly after sunrise and soon evaporates. Estimates suggest that 150,000 tons of water cycle between the surface and atmosphere on a daily basis.
Many astronomy-interested people know of the Hyades and the Pleiades. They’re star clusters in the Taurus constellation. They’re two out of a handful of star clusters that are visible to the unaided eye under dark sky conditions.
Scientists scour the Earth and the sky for clues to our planet’s climate history. Powerful and sustained volcanic eruptions can alter the climate for long periods of time, and the Sun’s output can shift Earth’s climate over millions of years.
Observing the earliest stars is one of the holy Grails of astronomy. Now, a team at the University of Hong Kong led by astronomer Jane Lixin Dai is proposing a new method for detecting them. If it works, the approach promises to open a window on the origin of the cosmos itself.
Dark Matter is Nature’s poltergeist. We can see its effects, but we can’t see it, and we don’t know what it is. It’s as if Nature is playing tricks on us, hiding most of its mass and confounding our efforts to determine what it is.
The James Webb Space Telescope (JWST) continues to make amazing discoveries. This time in the constellation of Pictor where, in the Beta Pictoris system a massive collision of asteroids. The system is young and only just beginning its evolutionary journey with planets only now starting to form. Just recently, observations from JWST have shown significant energy changes emitted by dust grains in the system compared to observations made 20 years ago. Dust production was thought to be ongoing but the results showed the data captured 20 years ago may have been a one-off event that has since faded suggesting perhaps, an asteroid strike!
The Milky Way is only as massive as it is because of collisions and mergers with other galaxies. This is a messy process, and we see the same thing happening with other galaxies throughout the Universe. Currently, we see the Milky Way nibbling at its two satellite galaxies, the Large and Small Magellanic Clouds. Their fate is likely sealed, and they’ll be absorbed into our galaxy.
There are plenty of crazy ideas for missions in the space exploration community. Some are just better funded than others. One of the early pathways to funding the crazy ideas is NASA’s Institute for Advanced Concepts. In 2017 and again in 2021, it funded a mission study of what most space enthusiasts would consider only a modestly ambitious goal but what those outside the community might consider outlandish—landing on Pluto.
To date, astronomers have confirmed the existence of 5638 extrasolar planets in 4,199 star systems. In the process, scientists have found many worlds that have defied expectations. This is certainly the case regarding “hot Neptunes,” planets that are similar to the “ice giants” of the outer Solar System but orbit much closer to their stars. But when a Johns Hopkins University-led team of astronomers discovered TIC365102760 b (aka. Pheonix), they observed something entirely unexpected: a Neptune-sized planet that retained its atmosphere by puffing up.
The James Webb Space Telescope (JWST) has once again found evidence that the early universe was a far more complex place than we thought. This time, it has detected the signature of carbon atoms present in a galaxy that formed just 350 million years after the Big Bang – one of the earliest galaxies ever observed.
It should not be surprising that Venus is dry. It is famous for its hellish conditions, with dense sulphurous clouds, rains of acid, atmospheric pressures comparable to a 900 meter deep lake, and a surface temperature high enough to melt lead. But it’s lack of water is not just a lack of rain and oceans: there’s no ice or water vapour either. Like Earth, Venus is found within our Solar System’s goldilocks zone, so it would have had plenty of water when it was first formed. So where did all of Venus’s water go?
There are likely millions of “rogue” or free-floating planets (FFPs) spread through the galaxy. These planets, which aren’t big enough to become stars but also aren’t beholden to a star’s gravity, are some of the hardest objects for astronomers to spot, as they don’t give off their own light, and can only be seen when they cross in front of something that does give off its own light. Enter Euclid, a space telescope that launched last year. Its primary mission is to observe the universe’s history, but a new paper describes an exciting side project – finding FFPs in Orion.

