Jupiter’s largest moon, Ganymede, features a surprisingly strong magnetic field for its size. Tidal effects from Jupiter continually stretch and squeeze the moon, keeping its core warm and driving the magnetic field. But the exact geological processes occurring within the core are not fully understood. Now, a new experimental study has put one of the leading models of core dynamics to the test: the formation of crystalized ‘iron snow’.
Space News & Blog Articles
Some years ago I rememeber running the SETI at Home screensaver and would watch it for hours to see if any peaks appeared naively thinking they might be signals from an alien civilisation! There is no doubt that the search for extraterrestrials (ET) has captivated the minds of many people across the years. The search has of course to date, been unsuccesful despite multiple observations that seem to suggest the conditions for life across the cosmos may actually be more common than we first thought. Now Chinese agencies are funding projects to use the Five Hundred Meter Aperture Spherical Telescope (FAST) to conduct searches for alien signals.
When NASA decided to send the little Ingenuity rotorcraft to Mars on the belly of the Perseverance rover, they weren’t certain of success. Nothing like it had ever been attempted in Mars’ extremely thin atmosphere. Mission planners hoped and planned for a total of five flights, enough for a technology demonstration.
NASA’s Juno spacecraft has been getting closer and closer to Jupiter’s volcanic moon Io with each recent orbit. Juno is in its 57th orbit of Jupiter, and on December 30th, Juno came to within 1500 km (930 miles) of Io’s surface. It’s been more than 20 years since a spacecraft came this close.
Astronomers have detected pond-like ripples across the gaseous disk of an ancient galaxy. What caused the ripples, and what do they tell us about the distant galaxy’s formation and evolution? And whatever happened, how has it affected the galaxy and its main job: forming stars?
Atoms are made of three things: protons, neutrons, and electrons. Electrons are a type of fundamental particle, but protons and neutrons are composite particles made of up and down quarks. Protons have 2 ups and 1 down, while neutrons have 2 downs and 1 up. Because of the curious nature of the strong force, these quarks are always bound to each other, so they can never be truly free particles like electrons, at least in the vacuum of empty space. But a new study in Nature Communications finds that they can liberate themselves within the hearts of neutron stars.
On November 8th, NASA’s Curiosity Rover paused its incessant science work and just watched the day unfold on Mars. The rover used its black-and-white Hazard-Avoidance Cameras (Hazcams) to watch an entire 12-hour day on Mars as the shifting Sun cast shadows across the Martian landscape. NASA chose this day because of the Mars solar conjunction when the Sun interferes with communications with the Red Planet, meaning the rover doesn’t do any roving about. The timelapse comprises 25 frames from both the front and rear Hazcams.
In 1950, during a lunchtime conversation with colleagues at the Los Alamos National Laboratory, famed physicist Enrico Fermi asked the question that launched a hundred (or more) proposed resolutions. “Where is Everybody?” In short, given the age of the Universe (13.8 billion years), the fact that the Solar System has only existed for the past 4.5 billion years, and the fact that the ingredients for life are everywhere in abundance, why haven’t we found evidence of extraterrestrial intelligence by now? This came to be the basis of Fermi’s Paradox, which remains unresolved to this day.
You know how some constellations take a little bit of imagination to see? Yes, Leo looks a bit like a lion and Orino a bit like a hunter but then we drift into the realms of powerful levels of imagination to be able to see Pegasus as a flying horse or Telescopium as a telescope! Even squinting or tilting your head really doesn’t make them visible. I found the same problem when looking at images of two stone disks discovered in Italy recently at the entrance to an ancient fort! Teams that have examined the stones have matched the subtle markings on them to positions of 28 bright stars in the sky! I had to really look to see it but I think they might actually be right!
While many of us were celebrating the end of 2023 and the coming of 2024, the Sun was having its own celebration blasting an X5.0 flare from sunspot region 3536. Records show this to be the most powerful flare seen since 10 September 2017 when an X8.2 flare erupted. The flare is expected to arrive around Jan 2 – EEK that’s today! Get your aurora watching kit out!
There are many mysteries in the world of astronomy and a fair number relate to the processes during the end of the life of a super massive star. Throw in the complexity of collisions and you have a real head scratching problem on your hands. In 2017 colliding neutron stars were detected and the data has allowed a new simulation to be tested with predictions beautifully matching observation.
Over 6,000 light-years from Earth, an open star cluster and its nebula cover a swathe of sky over 270 light-years across. It’s called the Running Chicken Nebula, and it’s more than just one object. The Running Chicken Nebula, also called IC 2944, also contains IC 2948, the brightest part of the Chicken, as well as several Bok Globules and smaller nebulae. The bright star Lambda Centauri is near the visual center of the Chicken but is actually much closer to Earth.
Rocket propulsion technology has progressed leaps and bounds since the first weaponised rockets of the Chinese and Mongolian empires. They were nothing more than rocket powered arrows and spears but they set the foundations for our exploration of space. Liquid propellant, ion engines and solar sails have all hit the headlines as we strive for more efficient methods of travel but a team has taken the next leap with a palm sized thruster system that could boost future tiny space craft across the gulf of space.
Light pollution ruins dark skies. It’s a scourge that ground-based observatories have to deal with in one form or another. Scientists used a small observatory in Japan to measure what changed when a nearby town improved its lighting practices. They also noted the challenges it still faces.
A recent study published in The Astrophysical Journal Letters investigates the potential existence of Mars-sized free-floating planets (FFPs)—also known as rogue planets, starless planets, and wandering planets—that could have been captured by our Sun’s gravity long ago and orbit in the outer solar system approximately 1,400 astronomical units (AU) from the Sun. For context, the farthest known planetary body in the solar system is Pluto, which orbits approximately 39 AU from the Sun, and is also part of the Kuiper Belt, which scientists estimate extends as far out as 1,000 AU from the Sun.
A recent study accepted to The Astrophysical Journal uses computer models to investigate why the exoplanet, TRAPPIST-1c, could not possess a thick carbon dioxide (CO2) atmosphere despite it receiving the same amount of solar radiation from its parent star as the planet Venus receives from our Sun, with the latter having a very thick carbon dioxide atmosphere. This study comes after a June 2023 study published in Nature used data from NASA’s James Webb Space Telescope (JWST) to ascertain that TRAPPIST-1c does not possess a carbon dioxide atmosphere. Both studies come as the TRAPPIST-1 system, which is located approximately 41 light-years from Earth and orbits its star in just 2.4 days, has received a lot of attention from the scientific community in the last few years due to the number of confirmed exoplanets within the system and their potential for astrobiology purposes.
Life, as we all know, is based on chemistry. Prebiotic chemical building blocks existed on our planet for a long time before life arose. Astrobiology and cosmochemistry focus on the formation of those building blocks. They also look at the role each played in creating all the life forms we know today.
Looking to the future, NASA is investigating several technologies that will allow it to accomplish some bold objectives. This includes returning to the Moon, creating the infrastructure that will let us stay there, sending the first crewed mission to Mars, exploring the outer Solar System, and more. This is particularly true of propulsion technologies beyond conventional chemical rockets and engines. One promising technology is the Rotating Detonation Engine (RDE), which relies on one or more detonations that continuously travel around an annular channel.
If we could travel far beyond our galaxy, and look back upon the Milky Way, it would be a glorious sight. Luminous spirals stretching from a central core, with dust and nebulae scattered along the spiral edges. When you think about a galaxy, you probably imagine a spiral galaxy like the Milky Way, but spirals make up only about 60% of the galaxies we see. That’s because spiral galaxies only form when smaller galaxies collide and merge over time. Or so we thought, as a new study suggests that isn’t the case.
Like many that grew up watching the skies, I have been captivated by the planets. Mars is no exception, with its striking red colour, polar caps and mysterious dark features. Many of the surface features have been driven by ancient volcanic activity but whether any geological activity moulds the terrain today is still subject to scientific debate. A recent study however has revealed that Mars is surprisingly active..even today!
Our Milky Way bristles with giant molecular clouds birthing stars. Based on what we see here, astronomers assume that the process of star creation also goes on similarly in other galaxies. It makes sense since their stars have to form somehow. Now, thanks to JWST, astronomers have spotted baby stellar objects in a galaxy 2.7 million light-years away. That’s millions of light-years more distant than any previous observations of newly forming stars have reached.