Space News & Blog Articles

Tune into the SpaceZE News Network to stay updated on industry news from around the world.

Exoplanets Seen Falling Apart

Astronomers have found two planets around two separate stars that are succumbing to their stars’ intense heat. Both are disintegrating before our telescopic eyes, leaving trails of debris similar to a comet’s. Both are ultra-short-period planets (USPs) that orbit their stars rapidly.

Continue reading
  202 Hits

Dynamically Stable Large Space Structures via Architected Metamaterials

Exoplanet exploration has taken off in recent years, with over 5500 being discovered so far. Some have even been in the habitable zones of their stars. Imaging one such potentially habitable exoplanet is the dream of many exoplanet hunters, however, technology has limited their ability to do that. In particular, one specific piece of technology needs to be improved before we can directly image an exoplanet in the habitable zone of another star – a starshade. Christine Gregg, a researcher at NASA Ames Research Center, hopes to contribute to the effort of developing one and has received a NASA Institute for Advanced Concepts (NIAC) grant as part of the 2025 cohort to work on a star shade that is based on a special type of metamaterial.

Continue reading
  192 Hits

Why The First Stars Couldn’t Grow Forever

Star formation in the early Universe was a vigorous process that created gigantic stars. Called Population 3 stars, these giants were massive, extremely luminous stars, that lived short lives, many of which were ended when they exploded as primordial supernovae.

Continue reading
  184 Hits

Black Hole Mergers Will Tell Us if the Universe Obeys Symmetry

The structure of the cosmos is rooted in symmetry. As first demonstrated by Emmy Noether in 1918, for every physical law of conservation in the Universe, there is a corresponding physical symmetry. For example, all other things being equal, a baseball hit by a bat today will behave exactly the same as it did yesterday. This symmetry of time means that energy is conserved. Empty space is the same everywhere and in all directions. This symmetry of space means that there is conservation of linear and rotational momentum. On and on. This deep connection is now known as Noether’s Theorem, and it is central to all of modern physics.

Continue reading
  155 Hits

Ingenuity Measured Windspeeds on Mars During its Flights

One of my gripes with ‘The Martian’ movie was the depiction of the winds on Mars. The lower air density means that the sort of high speed winds we might experience on Earth carry far less of an impact on Mars. During its 72 flights in the Martian air, NASA’s ingenuity helicopter took meticulous records of the conditions. A new paper has been released and reports upon the wind speeds on the red planet at various altitudes. Previous models suggested wind speeds would not exceed 15 m/s but Ingeniuty saw speeds as high as 25 m/s.

Continue reading
  178 Hits

Fast Radio Bursts Appear to Be Caused by Young Neutron Stars

Fast Radio Bursts (FRBs) are one of the greater mysteries facing astronomers today, rivaled only by Gravitational Waves (GWs) and Gamma-ray Bursts (GRBs). Originally discovered in 2007 by American astronomer Duncan Lorimer (for whom the “Lorimer Burst“ is named), these shot, intense blasts of radio energy produce more power in a millisecond than the Sun generates in a month. In most cases, FRBs are one-off events that brightly flash and are never heard from again. But in some cases, astronomers have detected FRBs that were repeating in nature, raising more questions about what causes them.

Continue reading
  165 Hits

Researchers Practice Searching for Life on Enceladus, in the Arctic Ocean

When searching for alien life, it’s not unusual to use Earth as a test bed for theories and even practice runs. Perhaps one of the most tantalising places in the Solar System to look for life is Saturn’s moon Enceladus. It has a liquid water interior and it is here that life may just be possible. A team of researchers want to test techniques for searching for life on Enceledaus by exploring the oceans of Earth. They have collected  water and ice samples and hope to find chemicals like methane and hydrogen. 

Continue reading
  145 Hits

Could Ocean Worlds Support Life?

There might be a type of exoplanet without dry land. They’re called “Hycean” worlds, a portmanteau of ‘hydrogen’ and ‘ocean.’ They’re mostly or entirely covered in oceans and have thick hydrogen atmospheres.

Continue reading
  161 Hits

Even More Planets Were Hiding in Kepler’s Fields

Kepler was one of the most successful exoplanet-hunting missions so far. It discovered 2,600 confirmed exoplanets – almost half of the total – in its almost ten years of operation. However, most data analysis focused only on one of the 150,000 targets it “intended” to look at. While it was making those observations, there were a myriad of background stars that also had their light captured incidentally. John Bienias and Robert Szabó of Hungary’s Konkoly Observatory have spent a lot of time looking at those background stars and recently published a paper suggesting there might be seven more exoplanet candidates hiding in the data.

Continue reading
  256 Hits

NASA is Testing Shape Memory Alloy Wheels

Rovers on alien worlds need to be built of strong stuff. The dry rugged terrain can be punishing on the wheels as they explore the surface. In order to prevent the damage to the wheels, NASA is testing a shape memory alloy material that can return to its original shape after being bent, stretched, heated or cooled.  NASA has already used this material for years but never in tires, in what may be its perfect application.

Continue reading
  302 Hits

Astronomers Release a Huge Survey of Exocomet Belts

The study of exoplanets is challenging enough with the immense distances and glare from the host start but astronomers have taken planetary system explorations to the next level. A team of astronomers have recently announced that they have observed belts of icy pebbles in systems with exoplanets. Using a radio telescope they have been able to detect wavelengths of radiation emitted by millimeter-sized pebbles created by exocomet collisions! Based upon this survey, they have found that about 20% of planetary systems contain these exocometary belts.

Continue reading
  150 Hits

Life Would Struggle to Survive Near Wolf 359

Red dwarfs always make me think of the classic British TV science comedy show in the 90’s that was named after them. The stars themselves better little resemblance to the show though. They are small, not surprisingly red stars that can generate flares and coronal mass ejections that rival many of the much larger stars. A team of astronomers have recently used the Chandra X-Ray Observatory to study Wolf 359 and found it unleashes brutal X-ray flares that would be extremely damaging to life on nearby planets. 

Continue reading
  253 Hits

Several Double Planetary Disks Found

If you want to know what the newly forming Solar System looked like, study planetary disks around other stars. Like them, our star was a single star forming its retinue of worlds and other stars did the same. This all happened 4.5 billion years ago, so we have to look at similar systems around nearby stars.

Continue reading
  186 Hits

Getting To Mars Quickly With Nuclear Electric Propulsion

A spacecraft takes between about seven and nine months to reach Mars. The time depends on the spacecraft and the distance between the two planets, which changes as they follow their orbits around the Sun. NASA’s Perseverance is the most recent spacecraft to make the journey, and it took about seven months.

Continue reading
  391 Hits

A Fast Radio Burst Came From an Old, Dead Galaxy

Fast radio bursts (FRBs) are intense flashes of radio light that last for only a fraction of a second. They are likely caused by the intense magnetic fields of a magnetar, which is a highly magnetic neutron star. Beyond that, FRBs remain a bit of a mystery. We know that most of them originate from outside our galaxy, though the few that have occurred within our galaxy have allowed us to pin the source on neutron stars. We also know that some of them repeat, meaning that FRBs can’t be caused by a cataclysmic event such as a supernova. Thanks to one repeating FRB, we now know something new about them.

Continue reading
  223 Hits

Tracing the Big Ideas that Led to Webb

At the end of large engineering projects, the design team is typically asked to develop a document, in some cases called a Theory of Operations. This document is meant to describe the design decisions, why they were made, and how they were implemented. The document intends to inform future engineers about why a system operates the way it does so they can assess if any modifications or improvements can be made. It also allows the design engineers to reflect on their work as a whole, sometimes in a new light. Recently, some original members of the design team of the James Webb Space Telescope decided to take their shot at a brief version of such a document, releasing a paper that describes the design history of what is now considered to be one of the crowning jewels of humanity’s space telescope fleet.

Continue reading
  317 Hits

Rubin Will Find Millions of Supernovae

The discovery of a few thousand type 1a supernovae over the last few decades has helped measure the expansion of the Universe. The new Vera Rubin Observatory will soon to start scour the skies looking for more. Astronomers hope that the discovery and observations of millions more exploding stars will allow the universal expansion to be mapped in unprecedented detail. If all goes to plan, the survey will begin in a few months with the entire southern sky being scanned every few nights. 

Continue reading
  263 Hits

What Will It Take To Reach Zero Space Debris?

The space debris problem won’t solve itself. We’ve been kicking the can down the road for years as we continue launching more rockets and payloads into space. In the last couple of years, organizations—especially the European Space Association—have begun to address the problem more seriously.

Continue reading
  366 Hits

Supersonic Winds Blowing on an Extreme Exoplanet

The exoplanet WASP-127b is an unusual world. It is about 30% larger than Jupiter but has just a fifth of Jupiter’s mass. It is an example of a super-puff planet because of its extremely low density. These puffy worlds are so unusual that we don’t know if they would resemble the gas giants of our solar system, or something more exotic, such as a large super-Earth. But a recent study of WASP-127b shows that super-puff worlds can have tremendous winds.

Continue reading
  341 Hits

China’s Chang’e 7 Will Include a Flag That Will ‘Flap’ on the Moon

China’s Chang’e 7 lunar lander mission will feature a flag fluttering in the vacuum of space.

Continue reading
  332 Hits

Coronal Loops Flicker Right Before the Sun Unleashes Big Flares

Predicting space weather is more complex than predicting traditional weather here on Earth. One of the most unpredictable kinds of space weather is solar flares, which explode out from the surface of the Sun and can potentially damage sensitive equipment like electrical grids and the ISS. The Carrington Event, one of the most violent solar storms in history, literally caused telegraph lines to catch fire when it occurred in 1859 – a similar storm would be much more devastating today. Due to their potentially destructive potential, scientists have long looked for ways to predict when a storm will happen, and now a team led by Emily Mason of Predictive Sciences, Inc. in San Diego thinks they might have found a way to do just that.

Continue reading
  287 Hits

SpaceZE.com